Review Exercise Set 5

Exercise 1: Find the domain for the given rational function.

$$f\left(x\right) = \frac{3x^2 + x}{x^2 + 4}$$

Exercise 2: Find the domain for the given rational function.

$$f(x) = \frac{3x^2}{2x^2 - 5x - 3}$$

Exercise 3: Find all vertical and horizontal asymptotes (if any) for the given rational function.

$$f(x) = \frac{3x+4}{x-5}$$

Exercise 4: Find all vertical and horizontal asymptotes (if any) for the given rational function.

$$f(x) = \frac{x^2 + 4x + 4}{x^3 - x^2 - 6x}$$

Exercise 5: Determine the x and y intercepts, vertical and horizontal asymptotes, symmetry, and any additional points needed to graph the given rational function.

$$f(x) = \frac{2x^2 - 18}{-3x^2 - 12x - 12}$$

Review Exercise Set 5 Answer Key

Exercise 1: Find the domain for the given rational function.

$$f\left(x\right) = \frac{3x^2 + x}{x^2 + 4}$$

To determine if we have any domain restrictions, set the denominator equal to zero and solve for x.

$$x^2 + 4 = 0$$
$$x^2 = -4$$

 x^2 will never be equal to a negative number so there are no domain restrictions. The domain for this rational function is all real numbers.

$$D = (-\infty, \infty) -- interval notation$$
 or
$$D = \{x \mid x \in \mathbb{R}\} -- set notation$$

Exercise 2: Find the domain for the given rational function.

$$f(x) = \frac{3x^2}{2x^2 - 5x - 3}$$

Set denominator equal to zero and solve for x

$$2x^2 - 5x - 3 = 0$$

 $(2x + 1)(x - 3) = 0$

Set each factor equal to zero

$$2x + 1 = 0 \text{ or } x - 3 = 0$$

 $x = -\frac{1}{2} \text{ or } x = 3$

Our domain restrictions are that x cannot be equal to -1/2 or 3, so our domain will be all real numbers except for these two.

$$D = \left(-\infty, -\frac{1}{2}\right) \cup \left(-\frac{1}{2}, 3\right) \cup \left(3, \infty\right)$$
or
$$D = \left\{x \mid x \neq -\frac{1}{2} \text{ or } 3\right\}$$

Exercise 3: Find all vertical and horizontal asymptotes (if any) for the given rational function.

$$f\left(x\right) = \frac{3x+4}{x-5}$$

To find the vertical asymptote, set the denominator equal to zero and solve for x.

$$x - 5 = 0$$
$$x = 5$$

To find the horizontal asymptote, compare the degree power of the numerator and denominator.

numerator is $3x^{1} + 4$ with a degree of 1 denominator is $x^{1} - 5$ with a degree of 1

Since the degree powers are the same the horizontal asymptote will be equal to the ratio of the leading coefficients in the numerator and denominator.

$$f(x) = \frac{3x+4}{1x-5}$$

$$y = \frac{3}{2}$$

$$y = \frac{3}{1}$$
$$y = 3$$

The asymptotes are:

vertical: x = 5 horizontal: y = 3

Exercise 4: Find all vertical and horizontal asymptotes (if any) for the given rational function.

$$f(x) = \frac{x^2 + 4x + 4}{x^3 - x^2 - 6x}$$

Vertical asymptotes

$$x^3 - x^2 - 6x = 0$$

$$x(x^2 - x - 6) = 0$$

$$x(x-3)(x+2) = 0$$

$$x = 0 \text{ or } x - 3 = 0 \text{ or } x + 2 = 0$$

$$x = 0 \text{ or } x = 3 \text{ or } x = -2$$

Exercise 4 (Continued):

Horizontal asymptotes

numerator is $x^2 + 4x + 4$ with a degree of 2 denominator is $x^3 - x^2 - 6x$ with a degree of 3

Since the degree power of the denominator is one more than the numerator, the horizontal asymptote will be the x-axis.

$$y = 0$$

The asymptotes are:

vertical:
$$x = -2$$
, $x = 0$, and $x = 3$ horizontal: $y = 0$

Exercise 5: Determine the x and y intercepts, vertical and horizontal asymptotes, symmetry, and any additional points needed to graph the given rational function.

$$f(x) = \frac{2x^2 - 18}{-3x^2 - 12x - 12}$$

Set f(x) = 0 and solve for x to find the x-intercepts

$$0 = \frac{2x^2 - 18}{-3x^2 - 12x - 12}$$

$$0 = 2x^2 - 18$$

$$18 = 2x^2$$

$$9 = x^2$$

$$\pm 3 = x$$

x-intercepts are (-3,0) and (3, 0)

Substitute 0 for x to find the y-intercept

$$f(x) = \frac{2x^2 - 18}{-3x^2 - 12x - 12}$$
$$f(0) = \frac{2(0)^2 - 18}{-3(0)^2 - 12(0) - 12}$$
$$= \frac{-18}{-12}$$
$$= \frac{3}{2}$$

y-intercept is (0, 3/2)

Exercise 5 (Continued):

Set denominator equal to zero and solve for x to find vertical asymptotes

$$-3x^{2} - 12x - 12 = 0$$

$$-3(x^{2} + 4x + 4) = 0$$

$$-3(x + 2)(x + 2) = 0$$

$$x + 2 = 0$$

$$x = -2$$

vertical asymptote is at x = -2

Compare degree powers to determine horizontal asymptote

numerator is
$$2x^2$$
 - 18 with a degree of 2 denominator is $-3x^2$ - 12x - 12 with a degree of 2

Since the degree powers are the same, the horizontal asymptote will be the ratio of the leading coefficients (2 and -3).

$$y = \frac{2}{-3}$$
$$y = -\frac{2}{3}$$

horizontal asymptote is as y = -2/3

Substitute -x for x to test for symmetry to the y-axis

$$f(x) = \frac{2x^2 - 18}{-3x^2 - 12x - 12}$$
$$f(-x) = \frac{2(-x)^2 - 18}{-3(-x)^2 - 12(-x) - 12}$$
$$= \frac{2x^2 - 18}{-3x^2 + 12x - 12}$$

f(-x) is not the same as f(x) so the function is not symmetric to the y-axis.

Exercise 5 (Continued):

Substitute -f(x) for f(x) to test for symmetry to the x-axis

$$f(x) = \frac{2x^2 - 18}{-3x^2 - 12x - 12}$$
$$-f(x) = -\frac{2x^2 - 18}{-3x^2 - 12x - 12}$$
$$= \frac{-2x^2 + 18}{-3x^2 - 12x - 12}$$

-f(x) is not the same as f(x) so the function is not symmetric to the x-axis.

Substitute -x for x and -f(x) for f(x) to test for symmetry to the origin

$$f(x) = \frac{2x^2 - 18}{-3x^2 - 12x - 12}$$

$$-f(-x) = -\frac{2(-x)^2 - 18}{-3(-x)^2 - 12(-x) - 12}$$

$$= -\frac{2x^2 - 18}{-3x^2 + 12x - 12}$$

$$= \frac{-2x^2 + 18}{-3x^2 + 12x - 12}$$

-f(-x) is not the same as f(x) so the function is not symmetric to the origin.

Evaluate f(x) at -7 and 7 to get a couple more points for the graph.

$$f(x) = \frac{2x^2 - 18}{-3x^2 - 12x - 12} \qquad f(x) = \frac{2x^2 - 18}{-3x^2 - 12x - 12}$$

$$f(-7) = \frac{2(-7)^2 - 18}{-3(-7)^2 - 12(-7) - 12} \qquad f(7) = \frac{2(7)^2 - 18}{-3(7)^2 - 12(7) - 12}$$

$$= \frac{80}{-75} \qquad = \frac{80}{-243}$$

$$\approx -1.07 \qquad \approx -0.33$$

Exercise 5 (Continued):

Graph the function using the data found

