
Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

Operating Systems
2010/2011

1

Action Synchronization

Johan Lukkien

Agenda

• Action synchronization

– formalization

– Semaphores

– producer/consumer

• POSIX examples

• Action synchronization

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

2

• Action synchronization

– mutual exclusion

– bounded buffer

Communication & synchronization

• Synchronization: limitation of possible traces

– coordination of execution such as to let this execution satisfy a

certain invariant

• i.e., avoid the traces that violate that invariant

– or just steering the execution to have some property

• e.g. such that a certain assertion holds during execution

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

3

• e.g. such that a certain assertion holds during execution

– typically, by sometimes blocking thread execution until an assertion

has become true

• We use the statement await (B) to denote blocking until a
condition B holds. We study then some ways to implement this
statement

Example: Vendor and Machine

Proc Machine =

|[while true do

Proc Vendor =

|[while true do

0 ≤ Stock ≤ MAX
Vendor

(Load)
Machine

`Load’ items 1 item

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

4

|[while true do

await (Stock>0);

{ Stock>0 }

Stock := Stock-1;

Manufacture

od

]|

|[while true do

DriveToFactory;

await (Stock+Load ≤ MAX);

{ Stock+Load ≤ MAX }

Stock := Stock+Load;

DriveBack;

ReLoad

od

]|

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

Issues around the example (1/2)

• Implementing the await using repeated testing works if
– the assignments (and tests) are atomic and ...

• however, usually, the update is a sequence of actions – i.e., a critical section,
which is not atomic ... hence needs mutual exclusion

– Even a single actions like x := x+1 becomes r := x; r := r+1; x := r, where
r is an internal register with atomic assignments

– ... at most one Vendor and one Machine exists

5

– ... at most one Vendor and one Machine exists
• otherwise, ‘race conditions’ occur (why and how?)

• Repeated testing is called: busy waiting, acceptable only if
– waiting is guaranteed short or

– there is nothing else to do anyway (e.g. in dedicated hardware)

• Busy waiting, when done at the level of an application above an OS,
costs performance (why?)
– hence, rely on OS primitives to solve waiting

– we are studying this

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

Issues around the example (2/2)

• May introduce extra variables to steer behavior more precisely

– e.g. no Machine is allowed when Vendor is waiting

– exercise

• The shared variables give problems

– these lead to an essential non-compositionality: when a (correct)

program is modified, everything must be verified again to check for

6

program is modified, everything must be verified again to check for

new interference

• e.g. going from one to two machines

– a ‘distributed’ realization, with one ‘maintainer’ (writer) per shared

variable is often better/easier

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

Agenda

• Action synchronization

– formalization

– Semaphores

– producer/consumer

• POSIX examples

• Action synchronization

7

• Action synchronization

– mutual exclusion

– bounded buffer

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

Specifying synchronization

Invariant: assertion that holds at all control points

Examples:
• I: “mutual exclusion is maintained”

• I: y ≤ x in the program below (assuming the assignments are atomic)

8

Initially: x=0 ∧ y=0

while true do <x := x+1>; <y := y+1> od

||

while true do <y := y-1>; <x := x-1> od

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

Terminology: naming and counting

Initially: x=0 ∧ y=0

while true do A: <x := x+1>; B: <y := y+1> od

||

while true do C: <y := y-1>; D: <x := x-1> od

Naming of actions

9

If A is an action in the program, cA denotes the number of completed

executions of A. cA can be regarded as an auxiliary variable that is

initially 0 and is incremented atomically each time A is executed.

A → <A; cA := cA+1>

while true do C: <y := y-1>; D: <x := x-1> od

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

Topology properties

Topology invariants: derived directly from the program text

Example: two actions always occurring one after the other

Initially: x=0 ∧ y=0

10

Invariants:

I0: x = cA - cD I2: 0 ≤ cA - cB ≤ 1

I1: y = cB - cC I3: 0 ≤ cC - CD≤ 1

while true do A: <x := x+1>; B: <y := y+1> od

||

while true do C: <y := y-1>; D: <x := x-1> od

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

Example

Showing invariance of I: y ≤ x

y ≤ x

= { I0, I1 }

cB - cC ≤ cA - cD

11

cB - cC ≤ cA - cD

= { I2: cB ≤ cA, I3: cD ≤ cC }

true

Note: such a proof must refer somehow to topology
because the property relies on it.

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

Synchronization conditions

• Action synchronization is specified by an inequality on action counts,
or on program variables directly related to this counting.

• We refer to such an inequality as a synchronization condition, or a
synchronization invariant.

PX = PY =

12

• Example: synchronize PX and PY such that invariant

I0: x ≤ y (= cA ≤ cB)

is maintained.

PX =

x := 0;

while true do

A: <x := x+1>

od

PY =

y := 0;

while true do

B: <y := y+1>

od

||

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

The vendor-machine problem

• Invariant:

– Stock = Load*c(Stock := Stock+Load) - c(Stock := Stock-1)

• Synchronization condition:

– 0 ≤ Load*c(Stock := Stock+Load) - c(Stock := Stock-1) ≤ MAX

13

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

Semaphores (Dijkstra)

• Semaphore s is an integer s with initial value s0 ≥ 0 and atomic
operations P(s) and V(s). The effect of these operations is defined
as follows:

P(s): < await(s>0); s := s-1 >

V(s): < s := s+1 >

14

• “< >” denotes again atomicity: the implementation of P and V must
guarantee this

• ‘await(s>0)’ represents blocking until ‘s>0’ holds. This is indivisibly
combined with a decrement of s

• a semaphore is therefore always non-negative

• Other names for P and V: wait/signal, wait/post, lock/unlock

• Semaphores can be used to implement mutual exclusion

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

Semaphore invariants

From the definition we derive two semaphore properties (invariants):

S0: s ≥ 0

S1: s = s0 + cV(s) - cP(s)

S0, S1: functional properties (“safety”). Combining:

15

S2: cP(s) ≤ s0 + cV(s)

hence, semaphores realize a synchronization invariant by definition

The implementation must pay attention on two more semaphore properties

- Progress: blocking is allowed only if the safety properties would be violated

- Semaphores may be fair (called strong, e.g. FIFO) or unfair (called weak)

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

Solve the producer/consumer problem

PX =

x := 0;

while true do

A: <x := x+1>

od

PY =

y := 0;

while true do

B: <y := y+1>

od

||

16

od

Synchronize PX and PY such that invariant

I0: x ≤ y

is maintained.

od

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

Program topology

Use the program topology:

x = cA and y = cB

hence, I0 can be rewritten

I0: cA ≤ cB

Introduce semaphore s; let A be preceded by P(s) and B be followed by V(s).

17

Topology:

I1: cA ≤ cP(s)

I2: cV(s) ≤ cB

Combine with semaphore invariant S4:

cA ≤ cP(s) ≤ s0 + cV(s) ≤ s0 + cB

Hence, choosing s0 = 0 does the job.

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

More restrictions

Suppose that we also want:

I3: y ≤ x+10, i.e., cB ≤ cA+10

Introduce a new semaphore t. Let A be followed by V(t) and B be preceded by

P(t). Then,

cB ≤ cP(t) ≤ t0 + cV(t) ≤ t0 + cA

18

Choose t0 = 10.

PX =

x := 0;

while true do

P(s); A: <x := x+1>; V(t)

od

PY =

y := 0;

while true do

P(t); B: <y := y+1>; V(s)

od

||

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

And more...

Suppose that instead of I0 we want

I4: 2x ≤ y, i.e., 2cA ≤ cB

Let A be preceded by two times P(s) (denoted as P(s)2). Then ,

2cA ≤ cP(s)

hence,

2cA ≤ cP(s) ≤ s0 + cV(s) ≤ s0 + cB

19

0 0

etc....

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

Action Synchronization

Given: - collection of tasks/threads executing actions A, B, C, D;
- a required synchronization condition (invariant)

SYNC: a⋅cA + c⋅cC ≤ b⋅cB + d⋅cD + e

for non-negative constants a,b,c,d,e .

20

Solution: introduce semaphore s, s0 = e and replace

A → P(s)a; A B → B; V(s)b

C → P(s)c; C D → D; V(s)d

Note: during execution of A and C we have strict inequality in SYNC.

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

The vendor-machine problem

• Invariant:

– Stock = Load*c(Stock := Stock+Load) - c(Stock := Stock-1)

• Synchronization condition:

– 0 ≤ Load*c(Stock := Stock+Load) - c(Stock := Stock-1) ≤ MAX

• Solution

– Introduce two semaphores, s and t
• s0 = 0, t0 = MAX

21

• s0 = 0, t0 = MAX

– adapt “Stock := Stock+Load”
• precede with Load times P(t), follow with Load times V(s)

– adapt “Stock := Stock-1”
• precede with P(s), follow with V(t)

• Note: mutual exclusion problem not solved with this. Needs separate
attention

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

Synchronizing Vendor and Machine

Proc Machine =

|[while true do

Proc Vendor =

|[while true do

0 ≤ Stock ≤ MAX
Vendor

(Load)
Machine

`Load’ items 1 item

22

|[while true do

P(s);

{ Stock>0 }

Stock := Stock-1;

V(t);

Manufacture

od

]|

|[while true do

DriveToFactory;

P(t)Load;

{ Stock+Load ≤ MAX }

Stock := Stock+Load;

V(s)Load;

DriveBack;

ReLoad

od

]|
Load times a P(t) operation

i.e., P(t); P(t); ... P(t);

not atomic

(needs another

semaphore)

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

• One semaphore for each synchronization condition.

• Synchronization conditions may be conflicting. A deadlock may result.

Remarks

Example: consider PX and PY as before with
I4: 2cA ≤ cB
I3: cB ≤ cA+10

After a few steps, this system deadlocks

23

• Sometimes a deadlock can be avoided by imposing extra restrictions.

• Finding synchronization conditions can be painful.

After a few steps, this system deadlocks

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

Agenda

• Action synchronization

– formalization

– Semaphores

– producer/consumer

• POSIX examples

• Action synchronization

24

• Action synchronization

– mutual exclusion

– bounded buffer

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

Counting semaphores (POSIX 1003.1b)

• Naming and creation

– “name” within kernel, persistent until re-boot, like a filename

• Posix names: for portability

– start names with ‘/’

– do not use any subsequent ‘/’

• for use between processes or between threads

– also “unnamed” semaphores, for use in shared memory

• shared memory between processes

25

– hence, two interfaces for creation and destruction

• initialize existing memory structure & OS-level allocation

sem_t *sem;

sem = sem_open (name, flags, mode, init_val); /* name is system-wide */

status = sem_close (sem); /* semaphore still reachable */

status = sem_unlink (name); /* now it is removed */

status = sem_init (sem, pshared, init_val); /* memory space for sem must be defined, e.g.

through shm or malloc */

status = sem_destroy (sem); /* pshared: whether multiple processes

* access sem; should be true */

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

Semaphore operations

• Basic interface, designed for speed

• Obtaining the value is tricky

– value is unstable

– negative value: interpret as number of waiters (length of queue)

26

status = sem_wait (sem);

status = sem_trywait (sem); /* returns error (EBUSY?) if sem == 0 */

status = sem_post (sem);

status = sem_getvalue (sem, &val); /* current value

* when negative: absolute value = # waiters */

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

#include <stdio.h>

#include <fcntl.h>

#include <pthread.h>

#include <semaphore.h>

sem_t *s, *t;

void Producer ()

{

int i;

for (i=0; i<10; i++) {

sem_wait (t); printf ("Produce "); fflush (stdout);

sem_post (s); sleep (1);

} }

Example

27

void Consumer ()

{

int i;

for (i=0; i<10; i++) {

sem_wait (s); printf ("Consume "); fflush (stdout);

sem_post (t); sleep (2);

} }

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

void main ()

{

pthread_t thread_id;

s = sem_open ("Mysem-s", O_CREAT | O_RDWR, 0, 0);

if (s == SEM_FAILED) { perror ("sem_open"); exit (0); }

t = sem_open ("Mysem-t", O_CREAT | O_RDWR, 0, 4);

(cnt’d)

28

if (t == SEM_FAILED) { perror ("sem_open"); exit (0); }

pthread_create (&thread_id, NULL, Producer, NULL);

Consumer ();

pthread_join (thread_id, NULL);

sem_close (s); sem_close (t);

sem_unlink ("Mysem-s"); sem_unlink ("Mysem-t");

}

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

Output

• Produce Consume Produce Consume Produce Produce Consume
Produce Produce Consume Produce Produce Consume Produce
Consume Produce Consume Consume Consume Consume

• Question: is there a shared resource visible (and a race condition?)

29

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

Agenda

• Concurrency concepts

• Action synchronization

– formalization

– Semaphores

– producer/consumer

• POSIX examples

30

• POSIX examples

• Action synchronization

– mutual exclusion

– bounded buffer

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

Mutual exclusion

Pr(n, 0 ≤ n < N) =

while true do

NonCriticalSection(n);

Given are N different process, repeatedly executing a critical section.

31

NonCriticalSection(n);

CsEntry(n);

CriticalSection(n);

CsExit(n)

od

Maintain as synchronization requirement

M: (Σ n: 0 ≤ n < N: cCsEntry(n) - cCsExit(n)) ≤ 1

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

Mutual exclusion (cnt’d)

Rewriting

M: Σ cCsEntry(n) ≤ 1+ Σ cCsExit(n)

With action synchronization: introduce m, m0 = 1.

CsEntry(n) → P(m); CsEntry(n)

CsExit(n) → CsExit(n); V(m)

32

CsExit(n) → CsExit(n); V(m)

(CsEntry(n)/CsExit(n) themselves can be “skip”.)

Semaphore m is called a binary semaphore or a mutex as opposed to a

general semaphore that can assume arbitrary non-negative values.

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

Making assignments critical sections

Proc Machine =

|[while true do

Proc Vendor =

|[while true do

DriveToFactory;

0 ≤ Stock ≤ MAX
Vendor

(Load)
Machine

`Load’ items 1 item

33

|[while true do

P(s);

{ Stock>0 }

P(m);

Stock := Stock-1;

V(m);

V(t);

Manufacture

od

]|

DriveToFactory;

P(t)Load;

{ Stock+Load ≤ MAX }

P(m);

Stock := Stock+Load;

V(m);

V(s)Load;

DriveBack;

ReLoad

od

]|

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

Checking the correctness criteria

• Since we have solved a synchronization problem and introduced
blocking we must verify the correctness criteria.

• Functional correctness (i.e., mutual exclusion) and minimal
waiting are by construction.

34

• Deadlock: see next slide

• Fairness: the solution is just as fair as the semaphore(s).

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

Reasoning about deadlock
• A deadlocked state is a system state in which a set of threads or

processes are blocked indefinitely

– typically, each thread is blocked on another thread in the same set

• Prove absence of deadlock, typically by contraposition

– assume, a deadlock occurs

– investigate which blocked sets are possible (often: just 1)

– show a contradiction

35

• in principle: examine all possible combinations of blocking actions in all tasks

• Example: (exclusion semaphore from page 31)

– Suppose a process is blocked on P(m) - indefinitely

– Since m=0 there is a process that is in its CS, hence also blocked indefinitely

– This process apparently never leaves its CS

– Hence, if all critical sections terminate, there is no deadlock caused by a

semaphore used just for exclusion

• What about the vendor/machine example?

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

POSIX: mutex (1003.1c)

• Special, two-state (i.e., 1 / 0) semaphore: mutex

– between threads

– specifically for mutual exclusion

• Restrictions

– don’t use copies of a mutex in the calls below

– lock() and unlock() always by same thread (“ownership”)

36

pthread mutex_t m = PTHREAD_MUTEX_INITIALIZER;

/* static initialization, not always possible */

status = pthread_mutex_init (&m, attr); /* attr: NULL; should return 0 */

status = pthread_mutex_destroy (&m); /* should return 0 */

status = pthread_mutex_lock (&m); /* should return 0 */

status = pthread_mutex_trylock (&m); /* returns EBUSY if m is locked */

status = pthread_mutex_unlock (&m); /* should return 0 */

P(m)

V(m)

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

Agenda

• Action synchronization

– formalization

– Semaphores

– producer/consumer

• POSIX examples

• Action synchronization

37

• Action synchronization

– mutual exclusion

– bounded buffer

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

(Un)bounded buffer

Specification:

1. Sequence of values

received equals

sequence of values sent.

2. No receive before send.

3. For the bounded buffer:

Buffer b

Receive(b,y) Send(b,x)

38

3. For the bounded buffer:

number of sends cannot

exceed number of receives

by more than a given

positive constant N.

Consume Produce

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

Design

• Data structure supporting FIFO: queue q, with operations
PUT(q,x) and GET(q,y)

– Introduce variable q of type queue.

• Exclusive access is required since PUT and GET are not atomic.

– Introduce semaphore m, m0 = 1.

39

– Introduce semaphore m, m0 = 1.

• The second requirement translates into cGET(q,...) ≤ cPUT(q,...)

– Introduce semaphores t, t0 = 0.

• The third requirement translates into cPUT(q,...) ≤ cGET(q,...) + N

– Introduce semaphore s, s0 = N.

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

First solution

type buffer =

record q: queue of elem;

s, t, m: Semaphore

end;

proc Send (var b: buffer; x: elem) =

|[with b do

P(s); P(m); PUT(q,x); V(m); V(t)

od

]|

40

Notice the order of the P-
operations: critical sections
should always terminate

proc Receive (var b: buffer; var y: elem) =

|[with b do

P(t); P(m); GET(q,x); V(m); V(s)

od

]|

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

Discussion

• Functional correctness and minimal waiting are again by
construction.

• Absence of deadlock is due to the fact that the critical sections

(i.e., the statements between P(m) and V(m)) terminate; any

permanent blocking must therefore be on the synchronization

41

permanent blocking must therefore be on the synchronization

semaphores. The implementation does not introduce deadlock.

• The only competition is on accessing the queue. Only if

semaphore m is weak and the buffer is unbounded, an unlimited

number of sends may occur.

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

Implementation: using arrays

Consider an infinite array as an implementation of a queue. Variables r
and w denote read- and write positions respectively (initially 0).

type queue =

record b: array of elem;

r w

42

record b: array of elem;

r, w: int

end;

proc PUT (var q: queue; x: elem) =

|[with q do

{ w = cPUT(q,…) }

b[w] := x; w := w+1

od]|

proc GET (var q: queue; var y: elem) =

|[with q do

{ r = cGET(q,…) }

y := b[r]; r := r+1

od]|

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

Optimization

• We want to use a finite array of length N, used with indices modulo N

• Question: is it possible to leave out semaphore m for synchronization?

– then, the array may never be accessed at the same place
• neither by r=w or by w-r = N

– to analyse, consider a concurrent access of consumer and producer

writer at “b[w] := x” and reader at “y := b[r]”

⇒ { use the program text + action synchronization: strict unequality }

43

⇒ { use the program text + action synchronization: strict unequality }

w = cPUT(q,..) < cGET(q,..)+N ∧∧∧∧

r = cGET(q,..) < cPUT(q,..)

⇒ { arithmetic }

0 < w-r < N

• Semaphore m for exclusion is not needed!

• An array of size N, used in a circular manner suffices.

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

Putting it together

type buffer =

record q: queue of elem;

s, t: Semaphore

end;

type queue (elem) =

record b: array [0..N) of elem;

r, w: int

end;

44

proc Send (var b: buffer; x: elem) =

|[with b, q do P(s); b[w] := x; w := (w+1) mod N; V(t) od]|

proc Receive (var b: buffer; var y: elem) =

|[with b, q do P(t); y := b[r]; r := (r+1) mod N; V(s) od]|

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

Exercise

A.1 Consider the parallel execution of the three program fragments below.

while true do A: x := x+2 od

while true do B: y := y-1 od

while true do C: x := x-1; D: y := y+2 od

45

Initially, x = y = 0

Synchronize the system in order to maintain

I0: 0 ≤ y

I1: x ≤ 10

Can you give an argument for absence of deadlock? Which additional restrictions

might cause deadlock?

while true do C: x := x-1; D: y := y+2 od

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

Exercise

A.2 Solve the Vendor/Machine problem.

– What to do if the assignments to Stock are not atomic?

– What if there are several Vendors and several Machines (both in case the

assignments are and are not atomic)?

46

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

Exercises

A.3 Given are N processes of the form

Here, X(n) is a non-atomic program section that must be executed under
exclusion. In addition, synchronize this system such that:

Pr(n, 0 ≤ n < N) = while true do X(n) od

47

a. the sections are executed one after the other, in order:

X(0); X(1); X(2);; X(N-1); X(0)...

b. X(i) is executed at least as often as X(i+1), for 0 ≤ i < N-1.

In the solutions, first state appropriate synchronization conditions.

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

Exercises

A.4 Given is a collection of processes using system
procedures A0 and A1. Synchronize the execution of these
procedures such that exclusion is provided and that one
execution of A0 and two executions of A1 alternate:

A0; A1; A1; A0; A1; A1 …

48

• Is there any danger of deadlock?

• What about the fairness?

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

Exercises

A.5 A collection of processes uses a collection of K resources. For each

resource there is an associated data structure, recorded in an array.

The processes repeatedly reserve and release resources using procedures

Reserve(i) and Release(i). Through a call of Reserve(i), variable i is assigned

the index of a free resource which is then claimed. This resource is

subsequently released through Release(i).

49

subsequently released through Release(i).

Write these two functions. Take care of exclusion on the array.

var Res: array [0..K-1] of

record avail: bool;

{ other variables }

end

Proc Reserve (var i: int)

Proc Release (i: int)

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

Exercises

A.7 Given are N processes of the following form

Proc Philosopher (n, 0 ≤ n < N) =

|[while true do NonCriticalSection(n);

CriticalSection(n)

od

]|

50

The critical sections pertain to the use of two resources out of a total of N

resources; Philosopher(n) uses resources number n and n+1, with addition

modulo N. Solve this problem. Discuss deadlock and fairness in particular.

]|

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

Exercises

A.8 Consider the parallel execution of the three program fragments below.

while true do A0: x := x+2; A1: y := y-1; A2: z := z-1 od

while true do B: y := y+2 od

while true do C0: z := z+1; C1: x := x-2 od

51

Initially, x = y = z = 0

Synchronize the system in order to maintain

I0: x+y+z ≤ 10

I1: y ≤ 5

The direct solution has danger of deadlock. Give a scenario. Can you repair it
by additional restrictions?

while true do C0: z := z+1; C1: x := x-2 od

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

Exercises

• B.1 Suppose that a bounded buffer is to be shared by two producers. What

must be changed?

• B.2 Two consumers use the same bounded buffer. The first consumer needs

3 portions each turn and the second needs 4. Solve this problem (assuming

first-come-first- serve) and answer the following questions:

– Is waiting minimal? If not, can you imagine a situation that leads to a deadlock?

52

– Does your solution work for a circular buffer of size 2?

– Now make a general routine to retrieve n messages.

– Specialize this solution for the case of a 1-place buffer.

Note: the behavior of the two consumers is their given behavior, you do not

need to enforce that.

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

Exercises

• B.3 N producers produce messages for one consumer. The messages must
be handled exclusively, one by one. Producer i waits until the consumer has
handled its message.

1. Write programs for producers and consumer.

2. Specialize your solution for the case of a buffer with just one single place.

• B.4 Consider two processes. One process produces a whole video frame per
cycle, the other consumes the frame sample by sample. There are m samples

53

cycle, the other consumes the frame sample by sample. There are m samples
per frame. We have a two place buffer for the frames. The producer can only
produce a frame when a place is available. Formalize this problem (write
programs) and give a properly synchronized implementation of the two
processes.

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

Summary: preventing deadlock

• The exercises A4, A7, A8, give the following insights for deadlock

prevention

• Let critical sections terminate

– in principle, no P operations between P(m)...V(m)

• Use a fixed order in P-operations on semaphores

– P(m);P(n); in one process may deadlock with P(n);P(m);... in another

54

– P(m);P(n); in one process may deadlock with P(n);P(m);... in another

process

– in fact: satisfy the synchronization conditions in a fixed order

• Beware of greedy consumers

– Let P(a)k be an indivisable operation when there is a danger of deadlock

In general: avoid cyclic waiting!

We come back to deadlock later.

Johan J. Lukkien, j.j.lukkien@tue.nl

TU/e Informatica, System Architecture and Networking

Competing Vendors: semaphore x , x0=1

Proc Machine =

|[while true do

P(s);

Proc Vendor =

|[while true do

DriveToFactory;

0 ≤ Stock ≤ MAX
Vendor

(Load)
Machine

`Load’ items 1 item

55

P(s);

{ Stock>0 }

P(m);

Stock := Stock-1;

V(m);

V(t);

Manufacture

od

]|

DriveToFactory;

P(x); P(t)Load; V(x);

{ Stock+Load ≤ MAX }

P(m);

Stock := Stock+Load;

V(m);

V(s)Load;

DriveBack;

ReLoad

od

]|

