
1

A Chaos Engineering System for Live Analysis and
Falsification of Exception-handling in the JVM

Long Zhang1, Brice Morin2, Philipp Haller1, Benoit Baudry1, and Martin Monperrus1

1KTH Royal Institute of Technology, Sweden
2SINTEF, Norway

Abstract—Software systems contain resilience code to handle those failures and unexpected events happening in production. It is
essential for developers to understand and assess the resilience of their systems. Chaos engineering is a technology that aims at
assessing resilience and uncovering weaknesses by actively injecting perturbations in production. In this paper, we propose a novel
design and implementation of a chaos engineering system in Java called CHAOSMACHINE. It provides a unique and actionable
analysis on exception-handling capabilities in production, at the level of try-catch blocks. To evaluate our approach, we have deployed
CHAOSMACHINE on top of 3 large-scale and well-known Java applications totaling 630k lines of code. Our results show that
CHAOSMACHINE reveals both strengths and weaknesses of the resilience code of a software system at the level of exception
handling.

Index Terms—dynamic analysis, exception-handling, production systems, chaos engineering

F

1 INTRODUCTION

CHAOS engineering is a new scientific method within
software engineering that consists in specifying and

evaluating resilience hypotheses by 1) injecting faults in a
production system, 2) observing the impact of such faults,
and 3) building new knowledge about the strengths and
weaknesses of the resilience of the system [7]. The core
idea of chaos engineering is active probing: the chaos en-
gineering system actively injects a controlled perturbation
into the production system and observes the impact of the
perturbation as well as the reaction of the system under
study [2], [10], [22]. This aids developers in gaining confi-
dence in the resilience of their system, and can help them
find weaknesses in error handling and disaster recovery
routines [3], [7].

Chaos engineering is fundamentally a production testing
method that complements other testing methods such as
static analysis or staging environments. The key features of
chaos engineering [19], [29] are that 1) it does not require
reproducing a realistic production environment in a testing
setup, and 2) it is focused on investigating resilience hy-
potheses (and not on functional correctness). An example of
a chaos engineering system is Netflix ChaosMonkey, which
randomly shuts down servers to make sure that the overall
system is capable of spawning new ones automatically.

In this paper, we present the design and implementation
of a novel chaos engineering system called CHAOSMA-
CHINE. Its core novelty and uniqueness is that it consid-
ers error-handling capabilities at the fine-grained level of
programming language exceptions. While bad exception-
handling is known to be the cause of up to 92% of critical
failures [43], it remains to be done to apply the chaos en-
gineering vision to exception-handling. The contribution of
this paper is CHAOSMACHINE which is capable of revealing
the resilience strengths and weaknesses for every try-catch
block executed in production.

CHAOSMACHINE is designed around three components.
For each service of the system under study, there is a mon-
itoring sidecar (component #1) and a perturbation injector
(component #2) attached to it. The monitoring sidecar is
responsible for collecting all information needed for the
resilience analysis, and the perturbation injector is able to
throw a specific exception at runtime. Component #3 is the
chaos controller, which controls all the perturbation injectors
and analyzes the information collected by all monitoring
sidecars. Eventually, the chaos controller produces a report
that gives developers unique and actionable knowledge
about the resilience of their system.

We evaluate CHAOSMACHINE by applying it to 3 large-
scale and well-known open-source Java applications in
the domains of file sharing, content-management system,
and e-commerce. All our experiments are conducted in a
production-ready environment with end-user-level work-
load. The results show that CHAOSMACHINE is capable of
analyzing the resilience of 339 try-catch blocks located in
212 Java classes. CHAOSMACHINE successfully identifies
the resilient try-catch blocks (18/339) that should remain
resilient in subsequent versions (according to our definition
of resilience presented in Section 3.3). It also identifies the
weakest try-catch blocks (34/339) which are possible debug
nightmares when developers try to understand failures hap-
pening in production.

In summary, our main contributions are the following.

• The conceptual foundations of chaos engineering in
the context of exception-handling in Java: 1) the defi-
nition of four categories of try-catch blocks according
to their resilience characteristics; 2) a systematic pro-
cedure to assess resilience of try-catch blocks.

• A novel system, called CHAOSMACHINE, that as-
sesses exception-handling capabilities in production,

ar
X

iv
:1

80
5.

05
24

6v
5

 [
cs

.S
E

]
 1

8
N

ov
 2

01
9

2

based on bytecode instrumentation of Java code.
It provides valuable and actionable feedback to
the developers. The system is publicly available
for future research (https://github.com/KTH/royal-
chaos/tree/master/chaosmachine).

• An empirical evaluation of CHAOSMACHINE on 3
real-world Java systems totaling 630k lines of code,
containing 339 try-catch blocks executed by the con-
sidered production traffic. It shows the effectiveness
of CHAOSMACHINE to reveal both strengths and
weaknesses of a software system’s resilience at the
exception-handling level.

The rest of the paper is organized as follows: Section 2
presents the background, Section 3 and Section 4 describe
the design and evaluation of CHAOSMACHINE. Section 6
and Section 7 discuss the literature and future work.

2 BACKGROUND ON CHAOS ENGINEERING

In this section, we give some background on chaos engineer-
ing [7] for readers who are not familiar with the concept.

2.1 Brief Overview

Chaos engineering is a scientific method to verify resilience
hypotheses about software systems [7]. In this context, a
hypothesis means that the system is resilient to a specific
type of failure. For example, Netflix hypothesizes that their
platform is resilient to a server crash. To investigate this hy-
pothesis, a ‘chaos experiment’ consists of randomly shutting
down a virtual machine and checking that this perturbation
has no bad influence on the main business metric of Netflix:
the number of served video streams per second.

Those resilience hypotheses express properties about the
behavior of a whole software system at scale [37]. Conse-
quently, the chaos experiments are meant to be run in an
environment that is as complex and as unpredictable as the
production one. Since it is very challenging to reproduce
the complexity and the scale of production environments in
a staging environment, chaos experiments are usually run
in production. By doing this, chaos engineering produces
knowledge about the system that is constantly updated to
the latest version of the system and its current production
workload. As chaos engineering means experimenting with
the system in production, Schermann et al. [40] consider it
as one dimension of continuous experimentation.

Let us now discuss a concrete example. Consider two
micro-services interacting with each other to provide a
feature. Those two micro-services have error-handling code
to deal with problems in the communication link. Chaos
engineering on this system would mean injecting a per-
turbation in the communication link in production. If the
system continues to provide the expected service under
this perturbation, the developers gain confidence in the
error-handling code. If any perturbation breaks the system’s
provided features, it means that the developers need to
fix the error-handling code. This is the meaning behind
the primary idea of chaos engineering: “experimenting on a
distributed system in order to build confidence in the system’s
capability to withstand unexpected conditions in production” [1].

2.2 Core Concepts
Chaos engineering is founded on the following concepts.

A perturbation is a change in the application execution
flow, or state, or environment; it is made in a pro-active
and controlled manner. An example of a perturbation in the
system environment is when one cuts down the memory
available to the system to see how the application reacts.
Perturbations are controlled by a perturbation controller,
which may be centralized or distributed depending on the
application.

A hypothesis is a stipulated relation between a perturba-
tion and observed, or monitored, behaviors. In the case of
a video streaming service, one monitored behavior can be
the number of streams started per second. The behaviors
of interest can be caught using a wide range of tools:
core business metrics (e.g., number of streams), execution
metrics (e.g., number of executions of a specific method),
environment metrics like I/O usage, etc. For example, a
hypothesis may be: in our web page rendering system, if
one stops the cache (a perturbation simulating that the cache
subsystem is broken), the correct content is still delivered to
users (monitored behavior).

An experiment is the process of validating or falsifying
a hypothesis. An experiment includes injecting perturba-
tions into the system, monitoring how the system reacts
and inferring validation and falsification. In the example
above, an experiment for this hypothesis is: 1) to inject an
exception into the page rendering service, and 2) to mon-
itor the system’s reaction. If there is a difference between
the behavior under injection and the normal behavior, the
experiment is considered to have falsified the hypothesis,
where “difference” is defined as a distance metric between
two observation metrics (examples of distance metrics are
given in Section 3.3.1).

2.3 Basic Chaos Methodology
Per [1], there are four main steps to apply chaos engineering
to a system.

The first three steps are related to designing the hy-
pothesis. First of all, one must find metrics which capture
the essential performance and correctness characteristics of
the system’s steady state. The steady state is characterized
by a range of metric values, with departure from that
range meaning the system should be considered impacted.
Secondly, one defines perturbations which simulate real-
world possible events, such as connection timeout, hard
drive exhaustion, thread death, etc.

Then one defines two phases: a control phase and an
experimental phase. A control phase is a monitoring pe-
riod without perturbation, while the experimental phase
is a study of the system behaviors under perturbation. At
the end of these first three steps, the hypothesis and the
experiment design are set.

Fourth, one performs the actual experiment, consisting
of injecting perturbations into the system and monitoring
the metrics. A report is eventually generated by analyzing
the differences in the effect of the perturbation between the
control phase and the experimental phase. There are two
possible outcomes: 1) when a hypothesis is validated, the
confidence in the system resilience capability is improved;

https://github.com/KTH/royal-chaos/tree/master/chaosmachine
https://github.com/KTH/royal-chaos/tree/master/chaosmachine

3

2) when a hypothesis is falsified, the issue is reported to the
development team, which then has to fix the error-handling
code.

Arguably, the most famous chaos engineering system
to date is Netflix’ ChaosMonkey. ChaosMonkey is used to
randomly shutdown systems that are part of a fleet pro-
viding a service in production and to then analyze impact
on that system. Developers at Netflix use the number of
video starts per second as a metric to define the system’s
steady state [37]. In this context, 1) an hypothesis is that
one instance terminating abnormally has no influence on the
number of served videos; 2) a perturbation is ChaosMonkey
shutting down a specific instance; 3) a chaos experiment
is the whole procedure of applying ChaosMonkey and
analyzing the system’s behavior to validate or falsify the
hypothesis.

2.4 Differences Between Traditional Fault Injection and
Chaos Engineering
Chaos engineering [37] and fault injection [34] are closely
related, as they both seek to perturb the runtime execution
of a system under study. We now discuss key differences
between both, as well as the main benefits and risks related
to chaos engineering.

Differences The major difference is that chaos engi-
neering is fault injection in production, while traditional
fault injection is usually done in a testing, off-line envi-
ronment. This has major implications. First, fault injection
in production imposes constraints on the overhead of fault
injection: production systems can be slowed down only to a
reasonable extent. Second, it means that the reasoning on the
results of fault injection in production has to be done with
the oracles and monitoring information that are available
in production. On the contrary, traditional fault injection
may have large overhead or may assume some level of
observability that is not available in production for security
or privacy reasons. For example, observing the content of
CPU registers is typically not available on a production
system.

Benefits The benefits of doing fault injection in production
are: 1) one has access to the system at scale with its full com-
plexity and size; 2) one has access to the production inputs
and workloads. On the contrary, a testing environment for
fault injection is usually smaller than the production system,
which may hide some defects or the simulated workloads
may be restricted or artificial. This results in a lower external
validity. In some cases, it may be impossible to set up a
testing environment for large distributed systems [4].

Risk Doing fault injection in production is risky [37]: it
may result in data corruption, degraded user experience,
and financial losses. Consequently, extra care is put in the
engineering of mitigating the impact of the perturbations.
Note the high interest of industry for chaos engineering
shows that the trade-off benefits/risks are interesting in
certain well-defined business cases.

3 DESIGN OF CHAOS SYSTEM FOR EXCEPTION-
HANDLING

This section presents our system for controlled chaos en-
gineering in the Java Virtual Machine, called CHAOSMA-

CHINE. Its core novelty is that it does chaos engineering at
the level of exception handling and try-catch blocks, which
is more fine-grained than all chaos engineering systems we
are aware of.

3.1 Overview

The goals of CHAOSMACHINE are:

1) allow developers to specify hypotheses directly in
their source code,

2) falsify hypotheses, and
3) discover hypotheses.

Goal 2 is the classical goal of chaos engineering sys-
tems [7], and the other two goals are the key contribution of
this paper.

Hypotheses. CHAOSMACHINE considers error-handling
hypotheses in Java applications. We focus on try-catch
blocks and consider the exception type that is caught (both
checked and unchecked).1

We define the following four chaos engineering hypothe-
ses at the level of try-catch blocks, from the most beneficial
to the most problematic:

• Resilience hypothesis. A try-catch block is said to be
resilient if the observable behavior of the catch block,
executed upon exception, is equivalent to the observ-
able behavior of the try-block when no exception
happens [11]. Listing 1 presents an example of a try-
catch block which meets the resilience hypothesis.

• Observability hypothesis. A try-catch block is said to be
observable if an exception caught in the catch block
results in user-visible effects, see Listing 2.

• Debug hypothesis. A try-catch block is said to be
debuggable if an exception caught in the catch block
results in an explicit message in the application logs,
see Listing 3.

• Silence hypothesis. A try-catch block is said to be
silent if it fails to provide the expected behavior
upon exception while providing no troubleshooting
information whatsoever, i.e., it is neither observable
nor debuggable. If the silent try-catch block later
causes a user-visible failure, it would be extremely
hard for the developers to understand that the root
cause is the silent try-catch block, and to fix the
failure accordingly, see Listing 4.

Listing 1. Try-catch Satisfying the Resilience Hypothesis
1 state = SystemState.A;
2 try {
3 ... // an error is thrown
4 state = SystemState.B;
5 } catch (
6 @ChaosMachine(hypoth=Hypoth.RESILIENT)
7 Exception e
8) {
9 ... // handles the exception

10 state = SystemState.B;
11 }
12 // After leaving the try-catch, the state

stays the same

1. If a checked exception is only passed (“throws” declaration in
Java), there is no resilience involved and remains out of our scope.

4

Listing 2. Try-catch Satisfying the Observability Hypothesis
1 try {
2 contentsToUsers.add("content A");
3 contentsToUsers.add("content B");
4 } catch (
5 @ChaosMachine(hypoth=Hypoth.OBSERVABLE)
6 Exception e
7) {
8 contentsToUsers.add("content C");
9 }

10 render(contentsToUsers);
11 // When exception occurs, contents for users

are different

Listing 3. Try-catch Satisfying the Debug Hypothesis
1 try {
2 ...
3 } catch (
4 @ChaosMachine(hypoth=Hypoth.DEBUG)
5 Exception e
6) {
7 ...
8 // Log troubleshooting information
9 Logger.error("...domain specific

information...");
10 }

Listing 4. Try-catch Satisfying the Silence Hypothesis
1 state = SystemState.A;
2 try {
3 state = SystemState.B;
4 contentsToUsers.add("content A");
5 } catch (
6 @ChaosMachine(hypoth=Hypoth.SILENT)
7 Exception e
8) {
9 state = SystemState.C;

10 contentsToUsers.add("content A");
11 // Nothing about the exception is logged
12 }
13 render(contentsToUsers);
14 // Users are not aware of the error, but

system state is different when an
exception occurs, which may lead to other
exceptions.

Experiments. CHAOSMACHINE performs two kinds of
experiments, falsification experiments and exploration ex-
periments that we now explain.

Falsification experiments aim at validating or falsifying a
hypothesis about the behavior of a try-catch block. This
hypothesis can be stated upfront by developers or can be
discovered through exploration experiments. When they
are stated by developers, it is in the form of an an-
notation @ChaosMachine defined directly on the excep-
tion within a catch statement, as illustrated in the pre-
vious scripts. This allows developers to explicitly emit
hypotheses on specific try-catch blocks, which they deem
of critical importance, based on their knowledge. Those
annotations are processed to produce a textual config-
uration file listing the try-catch block identifiers and
their hypothesized status per exception (one hypothesis
per line). The internal format used by CHAOSMACHINE
is as follows: Foo.java:42:NullPointerException
"observable" where the identifier is the tuple com-
posed of the name of the class, the line number of the
beginning of the try block, and the caught exception fol-

lowed by space and the hypothesized status.2 The output
lists the results: Foo.java:42:NullPointerException
"observable": FALSIFIED. Just like hypotheses dis-
covered by CHAOSMACHINE, those developer-specific hy-
potheses will be either verified or falsified, confirming or
invalidating the knowledge developers have on those anno-
tated try-catch blocks. The main benefit of annotating try-
catch blocks upfront is that CHAOSMACHINE will be able
to precisely relate back the specific lines in the source code
where an hypotheses were falsified.

Exploration experiments. They aim at monitoring the
behavior of try-catch blocks under perturbation in or-
der to discover new hypotheses. After an exploration ex-
periment, CHAOSMACHINE outputs a file with the try-
catch block identifiers and their status, for example,
Bar.java:42:NullPointerException "silent".

Modes. When CHAOSMACHINE performs exploration
experiments, it is said to be in exploration mode. When
CHAOSMACHINE performs falsification experiments, it is in
falsification mode. Finally, when CHAOSMACHINE does not
introduce chaos, it is simply in observation mode.

3.2 Input to CHAOSMACHINE

CHAOSMACHINE works on arbitrary software written in
Java, no manual change is required in the code. To use
CHAOSMACHINE, the application is deployed in production
as usual, CHAOSMACHINE is attached to it in an auto-
mated manner, in observation mode by default. Optionally,
developers can also feed CHAOSMACHINE with manually-
written hypotheses. The controller of CHAOSMACHINE, de-
scribed in Section 3.3.3, determines what must be done for
perturbation and monitoring according to the current mode.

3.3 Architecture of CHAOSMACHINE

Figure 1 presents the main components of CHAOSMACHINE
and their interactions. CHAOSMACHINE is meant to be de-
ployed on any modern Internet application, such as search
engines or transaction systems. Those applications typically
are distributed over several different servers, where the
servers either provide different services (as shown in the
figure with three different services), or provide redundancy
and elasticity for the same service. Per the best practices,
and without loss of generality, all services are considered
deployed in separate virtual machines for the sake of isola-
tion.

CHAOSMACHINE attaches a monitoring sidecar and a
perturbation injector into each service. The monitoring
sidecar (Section 3.3.1) collects information to study the
outcome of chaos experiments. The perturbation injector
(Section 3.3.2) is responsible for injecting perturbations
according to a given perturbation model. A perturbation
model is a set of rules that describe when, where and what
perturbations are to be injected. For example, a perturbation
model may be: inject an IOException at the first line of
method foo(), when this method is reached for the first

2. It may happen that there are multiple try-blocks on the same line,
if this is the case, CHAOSMACHINE supports more advanced unique
identifiers.

5

Java Virtual Machine 1

Service 1

Monitoring
Sidecar

Perturbation
Injector

Java Virtual Machine 2

Service 2

Monitoring
Sidecar

Perturbation
Injector

Java Virtual Machine 3

Service 3

Monitoring
Sidecar

Perturbation
Injector

Chaos Controller

Production traffic

Application & Chaos logs

Report

Developer Team

Normal Application Communication

Chaos Perturbation Commands
Chaos Machine Report

Monitoring Information

End Users

Fig. 1. The components of CHAOSMACHINE

TABLE 1
Interplay between the 3 components and the 3 modes of CHAOSMACHINE

Observation Mode Exploration Mode Falsification Mode

Monitoring Sidecar Monitors all the relevant execution
information

Monitors how the system reacts ac-
cording to a perturbation

Monitors whether an hypothesis is
falsified

Perturbation Injector Not active Injects a specific perturbation Injects a specific perturbation
Chaos Controller Deactivate all the perturbation in-

jectors to keep the system running
as usual

Controls perturbation injectors to
conduct a sequence of chaos exper-
iments so as to discover new hy-
potheses

Controls perturbation injectors ac-
cording to a specific hypothesis

time.3 The chaos controller (Section 3.3.3) is a standalone
component that is separated from the application services,
and it has three responsibilities: 1) controlling the behavior
of perturbation injectors; 2) aggregating monitoring infor-
mation from each monitoring sidecar; 3) generating a report
for the developers about the quality of error-handling in
their code, which contains novel and actionable feedback
about error-handling in production. We further describe
these outputs in Section 3.4.

3.3.1 Monitoring Sidecars
Chaos engineering consists of studying the influence of
perturbations on the system behavior, as captured by met-
rics [1]. The main role of the monitoring sidecar is to collect
behavioral metrics at runtime.

Metrics Metrics are used by CHAOSMACHINE to cap-
ture a behavioral difference under perturbation. There are
predefined metrics available by default in the system:

• The proportion of each process exit status to track
whether a service has exited normally or not (crash).

• The proportion of each HTTP status for web requests.
• A set of standard operating system metrics including

CPU usage, memory usage, and peak thread number.
• The frequency of each unique log line in the applica-

tion logs.

If the user wants to add its own metrics, this is possible
through “user-defined metrics” that are domain-specific.

3. This is related to a “fault model” in the fault injection literature
[34]. “Fault model” is a more general concept that is also used in
electrical engineering, while perturbation model is specifically used by
chaos engineering.

She is responsible to push the metric data to an endpoint on
the chaos controller (for instance, a video streaming service
may push the number of streams started per second).

Distance Measures The collected metrics are used to
determine if a behavior under perturbation is acceptable or
not. All default metrics come with a standard acceptance
criteria, eg nexit!=0 > 0 for process exit statuses.

Propagation and Observability Note that the injection
points and the observation points are uncorrelated, meaning
that the point of observation may be far away from the
catch block (both in space in the program and in time in
the execution). In other terms, the monitoring sidecar checks
whether the exception propagates in the program.

Injection Monitoring The monitoring sidecar finds the
try-catch blocks dynamically, as they are loaded into the
JVM. For each try-catch block the monitoring sidecar notes:
1) the position in the code, 2) the type of the caught excep-
tion, 3) the number of executions in observation mode 4) the
number of executions in exploration mode. 5) the current
call stack for each injection.

The features of the monitoring sidecars are important
to lower the risk of conducting chaos experiments: the
more monitoring information CHAOSMACHINE collects, the
more accurate it is to detect severe impacts of a specific
perturbation injection.

3.3.2 Perturbation Injectors

The main responsibility of a perturbation injector is to gen-
erate a specific perturbation when the chaos controller sends
the corresponding command, i.e., throwing an exception at
a specific line. The injector is added using automated code
instrumentation. In order to mitigate the influence of chaos

6

Listing 5. The Application Code is Automatically Transformed for Inject-
ing Perturbations (Line 2-5, 10-11 Are Injected by CHAOSMACHINE)
1 try {
2 // injector #1, type: Exception1
3 ChaosMachine.throwOrNot(key1);
4 // injector #2, type: Exception2
5 ChaosMachine.throwOrNot(key2);
6 ...original code...
7 } catch (Exception1 e1) {
8 ...original code...
9 try {

10 // injector #3, type: Exception3
11 ChaosMachine.throwOrNot(key3);
12 ...original code...
13 } catch (Exception3 e3) {
14 ...original code...
15 }
16 } catch (Exception2 e2) {
17 ...original code...
18 }

experiments, each injector can be activated and deactivated
individually.

Listing 5 gives an example of this perturbation injec-
tor. There are two try-blocks in this code snippet, Excep-
tion1 and Exception2 might happen in the first try-block
during the execution of the omitted code at line 6, and
Exception3 might happen in the second try-block at line
12. Consequently, there are three injection points in total,
corresponding to each caught exception type. For each per-
turbation, a unique key is generated based on the location
of a try-block and the type of exception it catches. The
beginning of this try-block is then instrumented with a call
to ChaosMachine.throwOrNot, using this key as an argu-
ment. In this way, every injector can be controlled separately.
For the sake of clarity, Listing 5 shows the effect of the
instrumentation on the source code. In practice, however,
the developer does not see the instrumented code, since
it happens dynamically when classes are loaded, through
bytecode manipulation. This means that there is no need
for the developer to declare variables or update the list
of imported packages. When an injector is activated in ex-
ploration or falsification mode, it throws the corresponding
exception.

3.3.3 Chaos Controller
The chaos controller orchestrates the behavior of all per-
turbation injectors. To reason about the impact of perturba-
tions, it aggregates the information provided by the moni-
toring sidecars. According to the monitoring data, the chaos
controller discovers new hypotheses or falsifies existing
hypotheses on the software system under study.

3.3.3.1 Hypothesis discovery: Hypothesis discov-
ery consists of proactively analyzing every executed try-
catch block. To do so, the chaos controller iterates over them
one after the other, to activate the corresponding pertur-
bation injector, and then analyzes all output as captured
by the monitoring sidecars. If the discovered hypothesis is
considered as acceptable by the developers, the new hypoth-
esis is saved permanently, so that CHAOSMACHINE could
conduct falsification experiments on it later on. Hypothesis
discovery is fully automated if the default metrics are used.
If the developer wants to limit hypothesis discovery to a

specific package, she can configure the controller with a list
of packages to be included.

3.3.3.2 Hypothesis falsification: To falsify a hypoth-
esis, the chaos controller activates the specific perturbation
injector which corresponds to the try-catch block in the
hypothesis. For example, it only activates the injector of
the try-catch block on line 42 of Foo.java, and keeps it
activated for a specific number of executions (e.g. for n = 5
executions of the try block). Then, the controller analyzes
the information recorded by the monitoring sidecars and
reports whether the injected perturbation has broken the
hypothesis under consideration.

In both cases, the chaos controller is configured by a
configurable time window: it activates a single perturbation
point for a certain duration (e.g., 1 second). In order to
minimize the impact of a perturbation experiment, the chaos
controller never activates more than one exception injector
at a time.

3.4 Output for Developers

CHAOSMACHINE produces a report for developers, contain-
ing the hypotheses validated or falsified for each try-catch
block, sorted according to their criticality. This provides de-
velopers with an overview of the resilience of their system.
Silent catch blocks are usually the ones that require the
most urgent attention, as they hurt the resilience and/or
debuggability of the system. Resilient catch blocks help the
resilience, by keeping the system running even when certain
exceptions happen.

3.5 Implementation

CHAOSMACHINE is written in Java in 2.1k lines of code.
Both the monitoring sidecars and the perturbation injec-
tors are woven into the application services using a JVM
agent [18]. The agent adds the monitoring and injection
code using binary code transformation with the ASM li-
brary.4 The code instrumentation happens when a class is
loaded into the JVM. With the help of the ASM library, it
is possible to iterate over all methods of the loaded class
and locate every try-catch block. Then, a piece of byte-
code is inserted at the beginning of each try-catch block;
it communicates with the chaos controller and throws a
corresponding exception. We leverage the Java Management
Extension (JMX) mechanism5 for monitoring sidecars, to re-
trieve observation metrics like CPU utilization and memory
usage. The chaos controller is a standalone service com-
municating with the monitoring sidecars and the injectors
using sockets. For the sake of open science, the code is
made publicly available at https://github.com/KTH/royal-
chaos/tree/master/chaosmachine.

4 EVALUATION

In our evaluation, we apply CHAOSMACHINE to 3 different
real-world Java projects, including TTorrent (a peer-to-peer
file downloading tool based on the BitTorrent protocol),
Broadleaf (a web-based commercial system) and XWiki (a

4. http://asm.ow2.org
5. https://en.wikipedia.org/wiki/Java Management Extensions

https://github.com/KTH/royal-chaos/tree/master/chaosmachine
https://github.com/KTH/royal-chaos/tree/master/chaosmachine
http://asm.ow2.org
https://en.wikipedia.org/wiki/Java_Management_Extensions

7

web-based wiki system). Following the chaos engineering
principles, all applications are set up in a production envi-
ronment. In the following, we present the protocol, experi-
mental results, case studies, and discussions for each project.

All the experiments rely on the same basic principles: 1)
the chaos controller evaluates try-catch blocks one by one in
the loading order of classes, 2) it only activates one pertur-
bation injector at a time and 3) the activation duration for
every injector is identical for all tasks. Once the application
is set up, CHAOSMACHINE verifies and evaluates try-catch
blocks following the procedure described in Section 3.1.

4.1 Evaluation on TTorrent

4.1.1 Overview of the BitTorrent protocol
BitTorrent is a peer-to-peer data transfer protocol, which is
widely used to download files over the Internet. The core
concept of the BitTorrent protocol is that users who want to
download a file also serve other users the file parts that they
have already downloaded. There are 4 parts in a typical file
transfer scenario with the BitTorrent protocol: 1) a torrent
file which includes information about the shared files and
the tracker servers; 2) several tracker servers which receive
client registrations and announce resource information to
new clients; 3) clients who want to download files, and then
get the torrent files and register their download status with
the tracker server; 4) clients who have already downloaded
files and provide pieces of the files to others (called the
“seeders”).

4.1.2 Experiment protocol
In this experiment, we consider the Bittorrent client called
TTorrent (version 1.5), written in Java. It is built as a .jar
file and can be used on the command line. We attach
CHAOSMACHINE to this client, and then use it to download
ubuntu-14.04.5-server-i386.iso, a Linux distribution installer
of 623.9MB from the Canonical company. This means that
we use tracker servers from somewhere else on the Internet,
and use many seeders that are providing pieces of the
downloaded file.

First, we classify try-catch blocks in TTorrent by refin-
ing the four hypotheses discussed in Section 3.1 with the
combining monitoring metrics specific to this application
domain.

• Resilient try-catch block. Despite injected exceptions
in this block, the client successfully downloads the
file and exits normally. The chaos controller also
detects some error messages in the application log.
Even though there is an exception thrown in the try-
catch block, the application still fulfills the user’s
requirement correctly. This kind of try-catch block
contributes to the application’s resilience, as the
application still supports the users’ requests even
though the entire logic of the try-block has been
discarded.

• Observable try-catch block. A try-catch block is said
observable if the client directly crashes or exits with
an error message under perturbations, i.e., the per-
turbation in this try-catch block causes user-visible
behaviors of the client.

• Debuggable try-catch block. A try-catch block is said
debuggable if the system metrics become abnormal
or the exception information is captured in applica-
tion logs when an exception is injected. The informa-
tion is useful for developers to debug and improve
the system’s resilience.

• Silent try-catch block. When an exception occurs in this
block, the client does not download the file and just
keeps running indefinitely. Worse still, there is not
any error information about the injected error. This
is a bad case for both users and developers: users
are not made aware that the download is stalled and
developers have no feedback whatsoever about the
problem. Developers can improve them so as to be
able to detect and debug such a problem if it happens
naturally in production.

Then, in an initial observation mode, the client down-
loads the full file once until successful completion. During
this phase, CHAOSMACHINE analyzes the client’s behavior.

Next, for the covered try-catch blocks, CHAOSMACHINE
executes the procedure defined in Section 3.1 while re-
downloading the file, and gathers the data shown in Table 2.
In exploration mode, the perturbed clients might not be
able to exit normally, so CHAOSMACHINE keeps the client
alive for at most 300 seconds. After this delay, the client is
killed and information is logged indicating that the client
was killed after this timeout.

4.1.3 Experimental results
Table 2 reads as follows: there are 27 try-blocks covered
by the production traffic, i.e., the code in the try-blocks
is executed while the client is downloading the file. Each
row contains the information of one try-block. The first
column is the basic information about each try-catch block,
including the class and method names, caught exception
type and a number which is used to identify different catch
blocks when there is more than one catch block for a single
try-block. The second column records the number of exe-
cutions, in both observation mode and exploration mode.
The third column indicates whether the developers have
logged the exception in their application logs when such an
exception is caught. The forth column shows whether the
client has successfully downloaded the file when exceptions
are injected in this try-block. The fifth column records the
client’s exit status. The sixth column indicates differences
in system metrics (if any) between the observation mode
and the exploration mode. Finally, the last four columns
indicate how this try-catch block meets our pre-defined four
hypotheses. Since injected exceptions change the execution
flow of the application, the number of executions in analysis
mode and exploration mode are not necessarily the same.

Take the first row as an example, it shows that there
is a try-catch block in the getBytes method inside the
BEValue class, which handles a ClassCastException.
Through the entire process of downloading the file, it is
executed 41 times. When the perturbation injector throws
a ClassCastException exception at the beginning of
the try-block, the client does not download the file and
crashes. The chaos controller also detects that a specific error
message is logged in the application log before its crash.

https://github.com/mpetazzoni/ttorrent/tree/ttorrent-1.5
https://www.ubuntu.com/download/alternative-downloads

8

TABLE 2
The Results of Chaos Experimentation With Exception Injection on 27 Try-catch Blocks in the TTorrent Bittorrent Client

Try-catch block information Execution
Obse./Expl.

Log. Downl. Exit status Sys. metrics RH OH DH SH

BEValue/getBytes,ClassCastException,0 41 / 1 yes no crashed - x x
BEValue/getNumber,ClassCastException,0 15 / 1 yes no crashed - x x
BEValue/getString,ClassCastException,0 37 / 1 yes no crashed - x x
BEValue/getString,UnsupportedEncodingException,1 37 / 1 yes no crashed - x x
ClientMain/main,CmdLineParser$OptionException,0 1 / 1 yes no crashed - x x
ClientMain/main,Exception,1 1 / 1 yes no crashed - x x
Announce/run,AnnounceException,0 1 / 60 yes no stalled - x x
Announce/run,InterruptedException,2 1 / 760 no yes normally threads+ x
Announce/run,InterruptedException,3 1 / 1 no yes normally no diff x
Announce/run,AnnounceException,4 1 / 1 yes yes normally no diff x x
Announce/stop,InterruptedException,0 1 / 1 no yes normally no diff x
ConnectionHandler/run,SocketTimeoutException,0 1290 /

1030
no yes normally no diff x

ConnectionHandler/run,IOException,1 1290 / 1 yes yes stalled cpu+ x
ConnectionHandler/run,InterruptedException,2 1290 / 2 yes no stalled no diff x
ConnectionHandler/stop,InterruptedException,0 1 / 1 no yes normally no diff x
ConnectionHandler$ConnectorTask/run,Exception,0 50 / 50 yes no stalled no diff x
Handshake/craft,UnsupportedEncodingException,0 50 / 48 yes no stalled no diff x
PeerExchange/send,InterruptedException,0 90763 /

210
no no stalled no diff x

PeerExchange/stop,InterruptedException,0 46 / 44 no yes normally no diff x
PeerExchange$OutgoingThread/run,InterruptedException,0 90805 /

32984841
no no stalled cpu+ x x

PeerExchange$OutgoingThread/run,InterruptedException,1 90763 /
288

no no stalled no diff x

PeerExchange$OutgoingThread/run,IOException,2 90805 / 43 yes no stalled no diff x
PeerExchange$OutgoingThread/run,IOException,3 90763 / 46 yes no stalled no diff x
Piece/validate,NoSuchAlgorithmException,0 2564 /

5427
yes no stalled cpu+ x

HTTPAnnounceRespMessage/parse,InvalidBEncodingException,0 3 / 30 yes no stalled no diff x
HTTPAnnounceRespMessage/parse,InvalidBEncodingException,1 3 / 30 yes no stalled no diff x
HTTPAnnounceResponseMessage/parse,UnknownHostException,2 3 / 30 yes no stalled no diff x
total: 27 / 52 460626 /

32992950
18 8 7 4 6 7 20 3

Listing 6. ClassCastException in BEValue/getBytes
1 public byte[] getBytes() throws

InvalidBEncodingException {
2 try {
3 return (byte[])this.value;
4 } catch (ClassCastException cce) {
5 throw new InvalidBEncodingException(

cce.toString());
6 }
7 }

Based on these behaviors, this try-catch block validates the
observability hypothesis (OH) and debug hypothesis (DH).

In total, there are 27 try-catch blocks covered by this
file-download operation in production. Some of them are
executed only once, others up to 90805 times (cf. Column
Execution Anal. of Table 2). This information is very im-
portant for the developer. Thanks to CHAOSMACHINE, the
developer is able to identify: 6 resilient try-catch blocks, 7
observable try-catch blocks, 20 debuggable try-catch blocks,
and 3 silent try-catch blocks.

4.1.4 Case studies

In the following, we detail 4 case studies.
Listing 6 shows a part of the getBytes method, con-

taining a single try-catch statement. This try-catch statement
is executed 41 times. When perturbed with an exception
injection, the chaos controller verifies that two core hypothe-
ses are validated in production: the exception is logged,
and the client exits with an error status. The developer

Listing 7. InterruptedException in Announce/run
1 while (!this.stop) {
2 ...
3 try {
4 Thread.sleep(this.interval * 1000);
5 } catch (InterruptedException ie) {
6 // Ignore
7 }
8 }

has no further action to take because this try-catch is both
observable and debuggable.

Listing 7 shows the run method in class Announce.
The try-block is a piece of code running in a sub-thread.
The announce thread starts by making the initial “started”
announce request to register on the tracker and get an
interval value. In observation mode, the try-catch block
is executed once. However, in the exploration mode with
exception injection, the try-catch block is executed 760 times.
Indeed, due to the skip of the Thread.sleep, the while
loop runs more times before reaching its objective. When
the perturbation injector injects the exception, the catch-
block simply “swallows” this exception and does not do
anything to handle the exception. This results in using
more computing resources. As shown in the comment, the
developer knows about this behavior. However, thanks to
CHAOSMACHINE, she is made aware that ignoring the
exception is not good for performance, and she is even
given a quantitative measurement (per the system metrics
collected by the monitoring sidecar).

Listing 8 is also from the run method in the Announce

9

Listing 8. AnnounceException in Announce/run
1 if (!this.forceStop) {
2 ...
3 try {
4 this.getCurrentTrackerClient().

announce(event, true);
5 } catch (AnnounceException ae) {
6 logger.warn(ae.getMessage());
7 }
8 }

Listing 9. InterruptedException in PeerExchange/send
1 public void send(PeerMessage message) {
2 try {
3 this.sendQueue.put(message);
4 } catch (InterruptedException ie) {
5 // Ignore exception
6 }
7 }

class. The exception type is AnnounceException and
this try-catch block is executed once in observation mode,
and once in the exploration mode. When the perturba-
tion injector injects the exception, the file is still correctly
downloaded. Once the client finishes the download, it exits
with a normal exit code, and some error messages about
this exception appear in the application log. In this case,
the try-catch block successfully blocks AnnounceException
to break the system. Even though there is only a logging
action in the catch block, our manual analysis has revealed
that developers have built the resilience mechanism outside
this particular catch block. Thanks to CHAOSMACHINE,
the developer has gained confidence in this specific catch
block’s exception-handling capability.

Listing 9 shows method send in class PeerExchange.
It is executed 90 763 times in observation mode and
210 times in exploration mode. The method invocation
this.sendQueue.put(message) at line 3 acquires a lock
unless the current thread is interrupted. Since this method
invocation may raise a checked InterruptedException,
developers need to wrap it with a try-catch block. In-
deed, Java enforces that checked exceptions have to ei-
ther be declared using a throws keyword in the method
signature, or be caught and handled using a try-catch
block, as shown. When the perturbation injector injects an
InterruptedException, the client just keeps running
until some external entity (the user or CHAOSMACHINE)
kills the process. No information is logged in the applica-
tion logs. This means that, when this exception happens
naturally, users have absolutely no debug information to
give to developers. Here, CHAOSMACHINE helps the de-
veloper to identify “nightmare” debug cases of the form
of purely silent try-catch blocks. Based on the CHAOS-
MACHINE report, the developer is urged to change the
exception-handling behavior.

4.1.5 Falsification on next version
It is of utmost importance that the resilience capabilities do
not degrade over time. We try to falsify all hypothesis in a
version of TTorrent (1.6) that is subsequent to the analyzed
one, with the same protocol. The result is that no hypothesis
discovered on version 1.5 is falsified on version 1.6, which
means that the resilient try-catch blocks are still capable of

handling unanticipated exceptions and keeping the system
steady.

Main result of the TTorrent experiment: In a real-world
production usage, CHAOSMACHINE identifies 6 re-
silient try-catch blocks and 3 silent ones in the TTorrent
client. Each silent try-catch block indicates a potential
debug case that would be extremely difficult to fix
(no visible behavior, no log can be provided by the
user). CHAOSMACHINE precisely detects those silent
try-catch blocks and reports them to the developer. In
subsequent versions, CHAOSMACHINE verifies that the
6 resilient try-catch blocks remain resilient thanks to
falsification experiments.

4.2 Evaluation on XWiki

4.2.1 Introduction of XWiki

XWiki is a widely-used open-source wiki system developed
in Java, and is active over the past 14 years. XWiki requires
external dependencies like a database server and a web
application server.

4.2.2 Experiment protocol

We use a full-fledged production setup of XWiki version
9.11.1, which is deployed into Tomcat-8.5.29 and configured
to connect to a MySQL server. We collect end-user traffic
performed through a web browser: 1) visit pages, 2) log in
with a username and a password, 3) add some comments
on the main page and on a specific user page, 4) update
personal page information and 5) log out. We record every
HTTP request, as well as the associated HTTP responses
(including response code, header and body).

In order to evaluate all the try-catch blocks in XWiki,
this end-user traffic is replayed to perform each experiment
as done in previous work [35]. The reply is done on the
production system directly, meaning that during the experi-
ment, the system is still able to serve other requests as usual.
This setup is also used for the evaluation of Broadleaf in
Section 4.3.

First, CHAOSMACHINE runs the observation mode to
monitor all the dynamic try-catch information and normal
behavior without any perturbation. Then, an exploration
mode is activated. CHAOSMACHINE activates the corre-
sponding perturbation injector for each covered try-catch
block. The injector is active for 1 minute and CHAOSMA-
CHINE collects the HTTP responses, which are then com-
pared to those collected in observation mode.

In XWiki’s experiment, we define the four classes of try-
catch blocks as follows:

• Resilient try-catch block. Despite injected exceptions in
this block, users still get the expected response con-
tent or succeed in adding comments and updating
personal profile.

• Observable try-catch block. A try-catch block is said
observable if the response code changes from “200
OK” to others. Consequently, users also get an error
page or request redirection under the corresponding
exceptions.

https://github.com/mpetazzoni/ttorrent/commit/081bab49f7928679217d4fd937456f69b6ab7da2
http://download.forge.ow2.org/xwiki/xwiki-9.11.1.war
https://archive.apache.org/dist/tomcat/tomcat-8/v8.5.29/

10

TABLE 3
Results on Chaos Experimentation on 268 Try-catch Blocks in XWiki

Covered by the Considered Workload

Packages Covered Executions in
Obse. / Expl.

RH OH DH SH

org/xwiki/a* 1 273 / 273 0 0 1 0
org/xwiki/c* 20 112968 / 119544 0 6 20 0
org/xwiki/d* 2 855 / 1398 0 0 2 0
org/xwiki/e* 11 20882 / 99204 0 1 11 0
org/xwiki/f* 23 44813 / 222 0 0 23 0
org/xwiki/i* 8 1142 / 280 0 0 8 0
org/xwiki/l* 12 295530 / 73048 0 1 12 0
org/xwiki/m* 9 38360 / 37739 0 1 9 0
org/xwiki/n* 10 62 / 190837 0 0 8 2
org/xwiki/o* 2 43753 / 68154 0 0 2 0
org/xwiki/p* 4 5403 / 3075 0 0 4 0
org/xwiki/q* 3 262 / 142 0 0 3 0
org/xwiki/r* 93 1137420 /

272944
5 7 70 14

org/xwiki/s* 15 20522 / 31826 2 5 15 0
org/xwiki/t* 2 83 / 81 0 0 2 0
org/xwiki/u* 20 13795 / 6229 0 8 16 1
org/xwiki/v* 5 3201 / 831 0 2 5 0
org/xwiki/w* 21 2526 / 3140 0 2 16 5
org/xwiki/x* 7 890 / 580 0 0 6 1
Total 268/1567 1742740 /

909547
7 33 233 23

• Debuggable try-catch block. A try-catch block is said
debuggable if the exception information is captured
in application logs when an exception is injected.

• Silent try-catch block. A silent try-catch block only
causes response body change while the response
code stays the same as usual, and there is no error
information about the injected exception in applica-
tion logs.

4.2.3 Experimental results
There are 290 user requests we recorded: 276 GET requests
and 14 POST ones. This traffic contains: 97 GET requests
directly on downloading resources, 178 GET requests and
10 POST requests on rendering pages, 4 POST requests on
logging in, adding comments, updating user data, and 1
GET request on logging out.

In total, 1567 try-catch blocks are registered in CHAOS-
MACHINE, and 268 of them are covered by the traffic we
recorded. Table 3 summarizes the data aggregated over
packages. The first column is the abbreviated package name.
The second column shows the number of try-catch blocks
that are covered by the production traffic. The third column
is the total number of try-catch block executions in both ob-
servation mode and exploration mode. Finally, the last four
columns indicate the number of try-catch blocks which meet
our pre-defined four hypotheses described in Section 3.1,
including: 7 resilient try-catch blocks, 33 observable try-
catch blocks, 233 debuggable try-catch blocks, and 23 silent
try-catch blocks.

Take the row “org/xwiki/s*” as an example. For all the
try-catch blocks in the package whose name begins with
org/xwiki/s, there are 15 try-catch blocks covered by
this set of chaos experiments. Under normal conditions,
these 15 try-catch blocks are executed 20522 times. When
CHAOSMACHINE activates the corresponding perturbation
injectors in these try-catch blocks, the same blocks are ex-
ecuted 31826 times in total. After classification by CHAOS-
MACHINE, the developer knows that: 1) 2 try-catch blocks

Listing 10. XWikiException in XWikiCachingRightService/authentica-
teUser
1 try {
2 XWikiUser user = context.getWiki().

checkAuth(context);
3 if (user != null) {
4 userReference = resolveUserName(user.

getUser(), new WikiReference(
context.getWikiId()));

5 }
6 } catch (XWikiException e) {
7 LOGGER.error("Caught exception while

authenticating user.", e);
8 }

satisfy the resilience hypothesis, 2) 5 try-catch blocks satisfy
the observable hypothesis, 3) 15 try-catch blocks satisfy the
debug hypothesis and 4) none of the try-catch blocks satisfy
the silence hypothesis.

With the help of this report, developers gain more
knowledge on XWiki’s error-handling capabilities in pro-
duction. They are also encouraged to take action: 1) go over
the silent try-catch blocks to confirm whether they need to
record more information when an exception occurs and 2)
focus on the try-catch blocks which have a serious impact on
system’s steady state, i.e. the observable ones. For example,
if there is an exception in a specific try block, which leads to
the system to generate an 500 response code instead of 200.
As a result, the response contents also change to an error
page for users. The chaos experiment provides more clues
for developers to review the try-catch block and help them
improve the fault tolerance ability.

4.2.4 Case studies

In the following, we detail two interesting cases found in
the XWiki experiment.

Listing 10 shows part of method authenticateUser
in class XWikiCachingRightService. There is only one
try-catch block in this method. It is executed 151 times in
observation mode and 153 times with perturbation. When
the exception occurs, this catch block logs the error informa-
tion. According to the monitored behavior, this perturbation
actually has a visible impact on certain requests: it leads
to an HTTP response code 302 (Redirect) instead of 200.
Per our definition, this try-catch block satisfies both the
observability and the debug hypothesis.

Listing 11 shows part of method runInternal in class
DefaultSolrIndexer’s private inner class Resolver.
This try block is executed 11 times in observation mode
and is executed only once with perturbation. CHAOSMA-
CHINE identifies that this perturbation does not influence
the output of any request. The monitoring sidecar also
detects that the exception is caught in the application
log. As we can see from the source code, developers log
the exception information and also assign queueEntry to
RESOLVE_QUEUE_ENTRY_STOP in the catch block which is
a valid error-handling strategy in this context. Through the
chaos experiment, the developers gain more confidence that
this exception-handling design actually works in produc-
tion.

11

Listing 11. InterruptedException in DefaultSolrIndexer $Resolver/runInt-
ernal
1 try {
2 queueEntry = resolveQueue.take();
3 } catch (InterruptedException e) {
4 logger.warn("The SOLR resolve thread has

been interrupted", e);
5 queueEntry = RESOLVE_QUEUE_ENTRY_STOP;
6 }
7

8 if (queueEntry == RESOLVE_QUEUE_ENTRY_STOP)
{

9 // Stop the index thread: clear the queue
and send the stop signal without

blocking.
10 indexQueue.clear();
11 indexQueue.offer(INDEX_QUEUE_ENTRY_STOP);
12 break;
13 }

Main result of the XWiki experiment: CHAOSMACHINE
analyzes 268 try-catch blocks and identifies 7 that sat-
isfy the resilience hypothesis, and 23 try-catch blocks
that are silent, violating the silence hypothesis. This
experiment shows that our prototype implementation
of CHAOSMACHINE scales to a system with 440k LOC
and 1567 try-catch blocks loaded in the JVM.

4.3 Evaluation on Broadleaf
4.3.1 Introduction of Broadleaf
Broadleaf Commerce is a series of open-source products in
an e-commerce platform written in Java. There are three
components in Broadleaf which can be deployed sepa-
rately into different servers: administration website, end-
user shopping website and data fetching APIs.

4.3.2 Experiment protocol
We choose to conduct chaos experiments on Broadleaf ver-
sion 5.0.0-GA. It provides an embedded Tomcat server, a
HyperSQL database and a startup script, which simplifies
deployment. For this experiment, we focus on the end-user
shopping website. Similar to the experiments on XWiki, we
deploy Broadleaf and randomly interact with the website
system, including: 1) visiting product pages, 2) logging in
with a username and a password, 3) adding products to
a shopping cart, 4) checking out, and 5) logging out. As
before, we record every user request and its associated
response. In this experiment, we define resilient, observable,
debuggable, silent try-catch block as per the XWiki experi-
ment in Section 4.2.2, since they are both web systems with
the same core characteristics.

4.3.3 Experimental results
The recorded operations include 384 requests in total. There
are 362 requests responsible for directly downloading files,
all of which are GET requests. There are 15 GET requests
about rendering pages. All of the 6 functional requests are
POST, including logging in, updating the shopping cart,
and checking out. The request for logging out is a request
of type GET. These requests are replayed by GoReplay all
the time during the experiments, and the time to finish

TABLE 4
Results on Chaos Experimentation on 44 Try-catch Blocks in Broadleaf

Covered by the Considered Workload

Packages Cove. Executions in
Obse. / Expl.

RH OH DH SH

o/b/cms/file* 1 53 / 50 0 1 1 0
o/b/cms/url* 3 288 / 111 2 0 0 1
o/b/com*/audit* 2 40 / 13 0 0 1 1
o/b/com*/classloader* 2 1596 / 849 0 2 2 0
o/b/com*/i18n* 1 10660 / 51 0 1 1 0
o/b/com*/persistence* 1 24 / 2 0 0 1 0
o/b/com*/security* 2 14 / 40 0 1 2 0
o/b/com*/util* 1 30 / 21 0 1 1 0
o/b/com*/web* 4 188 / 60 0 2 3 1
o/b/core/catalog* 1 2 / 2 0 0 0 1
o/b/core/order* 5 34 / 84 0 3 5 0
o/b/core/payment* 1 1 / 1 1 0 0 0
o/b/core/pricing* 1 5 / 21 0 1 1 0
o/b/core/rating* 2 6 / 6 0 0 2 0
o/b/core/search* 2 44 / 38 0 2 2 0
o/b/core/web* 10 615 / 340 1 5 7 2
o/b/ope*/audit* 3 16 / 14 0 1 1 2
o/b/profile/core* 1 3 / 2 1 0 0 0
o/b/vendor/sample* 1 1 / 1 0 1 1 0
Total 44/355 13620 / 1706 5 21 31 8

this sequence of operations is less than 90 seconds. First,
CHAOSMACHINE keeps a 90 seconds observation mode to
gather the system’s normal behaviors. At the same time,
it also obtains information about covered try-catch blocks.
Then, for each covered try-catch block, CHAOSMACHINE
runs in exploration mode for 90 seconds. The results are
generated and discussed next.

Table 4 summarizes the results. The recorded traffic
covers 44 try-catch blocks. In the first step of the experi-
ment, we leave CHAOSMACHINE running automatically. In
this case, it does not detect any resilient try-catch blocks,
which leads us to do some further analysis. In the second
step, we manually analyze all logs generated by monitoring
sidecars. This analysis reveals that some of the diff-logs are
semantically equivalent, but the monitoring sidecar marks
the output as different if it is not the same.

For instance, Broadleaf uses JSON objects to handle
the prices of products with different properties. The price
of an XL-size black T-shirt is $17, which is displayed
as {"options":[1, 14], "price":17}. In the snippet,
number 1 stands for “XL” and number 14 stands for “black”.
It is obvious that {"options":[14, 1], "price":17}
has the same meaning. However, the current implementa-
tion of our monitoring sidecar regards these as different
outputs. This phenomenon reflects one limitation of the
monitoring sidecar: it is not sophisticated enough to deter-
mine semantical equivalence.

Following the manual comparison between the response
bodies, the revised report about try-catch resilience is: 5
resilient try-catch blocks, 21 observable try-catch blocks, 31
debuggable try-catch blocks, and 8 silent try-catch blocks.

4.3.4 Case studies
Next, we discuss one of the most interesting cases found in
the chaos experiment on Broadleaf.

As shown in Listing 12, CHAOSMACHINE identifies this
try-catch block as a resilient one. As the method name
suggests, the method is used for obtaining the sub-division
of a country. The method is executed 3 times in observation

https://www.broadleafcommerce.com/
https://github.com/BroadleafCommerce/LegacyDemoSite/tree/broadleaf-5.0.0-GA

12

Listing 12. NoResultException in CountrySubdivisionDaoImpl/findSub-
divisionByCountryAndAltAbbreviation
1 public CountrySubdivision

findSubdivisionByCountryAndAltAbbreviation
(...) {

2 TypedQuery<CountrySubdivision> query =
new ...

3 try {
4 return query.getSingleResult();
5 } catch (NoResultException e) {
6 return null;
7 }
8 }

mode and 2 times in exploration mode. When the perturba-
tion injector is activated, the query result is always “null”.
The reason why the response content stays the same is that
in observation mode, the user’s country information does
not contain sub-divisions. Thus, no matter if there is an
exception, the query result remains “null”. However, this
try-catch block may impact the system’s output if a specific
user has sub-division information.

This phenomenon exposes another limitation of CHAOS-
MACHINE. Since it uses production traffic to evaluate the re-
silience of try-catch blocks, the traffic might not be sufficient
to give definitive conclusions. For some try-catch blocks that
are currently classified as resilient, different traffic may be
able to falsify the hypotheses. The accuracy of the report of
CHAOSMACHINE can be optimized by using more varied
production traffic.

4.3.5 Discussion of Broadleaf experiment
The experiments on Broadleaf reveal two limitations of
CHAOSMACHINE as discussed above: 1) the monitoring
sidecar has no automated way of semantically comparing
the outputs (in this case the JSON outputs), hence, in
addition to the automated capabilities of CHAOSMACHINE
further manual work may be needed to improve monitor-
ing; 2) when the availability of production traffic is limited,
CHAOSMACHINE only guarantees that the try-catch iden-
tifications are correct under the considered workload. We
note that it is also possible to generate more diverse traffic
or capture the production traffic for a longer time.

Main result of the Broadleaf experiment: CHAOSMA-
CHINE identifies 5 resilient, 8 silent ones, 21 observable
ones, and 31 try-catch blocks. This experiment exposes
two important facts: (a) the monitoring sidecar may
need to embed some domain-specific user-defined met-
rics in order to better interpret the application output
and logs, and (b) the length of the captured production
traffic during chaos experimentation matters.

4.4 Overhead of the CHAOSMACHINE

Now, we discuss the overhead of CHAOSMACHINE. We
present in the context of TTorrent because the overall down-
loading time of a file is a clear cut metric. The results for the
other case studies are equivalent. We calculate the overhead
of CHAOSMACHINE in three aspects: 1) at the application
level, by measuring downloading time increase between
the original version and the instrumented version, 2) at

TABLE 5
The Overhead of An Exploration Experiment on TTorrent

Evaluation Aspects Original Version Instrumented Version Variation

Downloading time 102.2s 96.4s -6%
CPU time 2288 3410 50%
Memory usage 289M 332M 15%
Peak thread count 119 116 -3%
Class files size 330.Kb 334.Kb 1.3%

the system level, by measuring CPU and memory usage
increase, and 3) at the binary code level, by measuring code
bloat due to instrumentation. For statistical purposes, we
conduct the same measurement 5 times and calculate the
average. The results are presented in Table 5.

The instrumentation done by CHAOSMACHINE has little
influence on downloading time, memory usage and file
size. We observe a 50% higher CPU time; this is due to
the fact that CHAOSMACHINE turns on all the monitoring
sidecars to print more information. Note that in falsification
mode, when CHAOSMACHINE focuses on some specific hy-
potheses, the overhead of CPU time is significantly reduced
to less than 1%. As a summary, the overhead of chaos
experiments on TTorrent can be considered as compatible
with production requirements.

5 DISCUSSION

5.1 Threats to Validity
5.1.1 Internal Validity
The main threat to internal validity is that changing the
perturbation model may change the results of the experi-
ment. For example, another perturbation model could inject
exceptions at the end of a try-catch block instead of at the
beginning. Future work will analyze how different pertur-
bation models influence the experimental results.

5.1.2 External Validity
CHAOSMACHINE has been evaluated on three different
kinds of Java applications, including one client-side file
downloading tool and two server-side web applications.
The validity for other application domains and languages
which support the JVM as compilation target has to be ver-
ified. Further work will evaluate the application of CHAOS-
MACHINE to JVM bytecode compiled from other languages
like Scala and Kotlin. It would also be interesting to study
CHAOSMACHINE in the context of application frameworks
like Spring [23] and Akka6 for reactive applications.

5.1.3 Construct Validity
One of the threats to construct validity is that CHAOSMA-
CHINE does not consider the potentially delayed causality
of an injected exception. As described in Section 4, CHAOS-
MACHINE only turns on one perturbation injector during an
experiment. If the perturbation has a direct influence on the
application’s behavior, CHAOSMACHINE detects the side-
effects for the current request. However, CHAOSMACHINE is
not able to analyze whether a triggered error has an impact
on subsequent requests. In future work, this limitation could

6. https://akka.io/

https://akka.io/

13

be addressed 1) by defining specific hypotheses regarding
an application’s behavior over time, and 2) by changing the
granularity of a single chaos experiment.

5.2 Extensibility of CHAOSMACHINE

CHAOSMACHINE is designed to evaluate the error-handling
capabilities of Java applications. More specifically, it fo-
cuses on the resilience of try-catch blocks. Yet, it is possi-
ble to customize CHAOSMACHINE for other fault injection
experiments. Indeed, CHAOSMACHINE provides an inter-
face which defines a byte code instrumentation method
generateByteCode. By default, CHAOSMACHINE initial-
izes a default perturbation injector as explained in Sec-
tion 3.3.2.

This makes CHAOSMACHINE extensible: developers are
free to implement their own perturbation strategy by im-
plementing this interface. To prevent unwanted interactions
between different perturbation strategies, CHAOSMACHINE
instantiates a single strategy per experiment. This does not
impact the monitoring sidecar, the metrics are systemati-
cally extracted from Java Management Extensions (JMX) for
all new perturbators. Yet, developers can also define new
application-level metrics. In summary, we have designed
CHAOSMACHINE with the intention to reduce the effort for
customization.

6 RELATED WORK

Chaos engineering per se is a new field which is little
researched, hence the closely related work is relatively
scarce. Beyond chaos engineering, we discuss complemen-
tary work in the areas of fault-injection, static analysis of
error-handling, and dependability benchmarking.

6.1 Software Fault Injection

Software fault injection (SFI) is a well-researched area in
the field of software dependability; we refer to Natella et
al.’s [34] survey about SFI including its concepts, appli-
cations and comparisons. It is traditionally applied offline
to evaluate error-handling capabilities. Kanawati et al. [24]
proposed FERRARI, a tool for the validation of depend-
ability properties. Han et al. [20] designed DOCTOR, an
integrated environment for assessing distributed real-time
systems, and Lee et al. [28] proposed SFIDA, a tool to test
the dependability of distributed applications on the Linux
platform. All of these tools are based on injecting hardware-
related faults, in a testing setup. Montrucchio et al. [32],
Segal et al. [6], [41], Arlat et al. [5] also presented similar
injection techniques for simulating hardware faults. Kao et
al. [27] invented “FINE”, a fault injection and monitoring
tool to inject both hardware-induced software errors and
software faults. Cotroneo et al. proposed a methodology to
assess OpenStack’s resilience with respect to software fail-
ures using fault injection [12]. Ghidei [17] proposed LDFI-
Akka, a tool that employs lineage-driven fault injection for
actor-based programs to analyze the weaknesses of Akka
programs. All those systems are not meant to be used in
production, because, in the literature, fault tolerance analy-
sis is done at design or testing time. More importantly, it is

actually not possible to use them in production out-of-the-
box, either because they require the source code or because
they impose an unacceptable overhead. In contrast, CHAOS-
MACHINE is designed for fault injection in production in
order to give precious insights of error-handling capabilities
in a live setting.

Marinescu and Candea described LFI [30], a reusable and
scalable library-level fault injection framework to test the re-
covery code of a given system. The common idea of LFI and
CHAOSMACHINE is that neither of them requires the source
code, and that fault injection happens at runtime. However,
there are two main differences between these techniques:
1) LFI injects failures into common libraries on which an
application depends, while CHAOSMACHINE injects excep-
tions directly into the application; 2) LFI injects faults by
manipulating error return codes and corresponding side
effects while CHAOSMACHINE generates application-level
exceptions.

Netflix [10] is well known for its ChaosMonkey, which
randomly shuts down Amazon instances in production. It
is used to ensure that the user experience is not impacted
by a loss of an Amazon instance. This methodology has
been extended to more failure types both at Netflix [22] and
other companies [33]. An example of cloud-oriented tool is
by Sheridan et al. [42], who presented a fault injection tool
for cloud applications, where faults are resource stress or
service outage. While those tools conduct chaos experiments
between services at the OS level or the network level,
CHAOSMACHINE is, to the best of our knowledge, the first
to perform chaos experiments in a white-box fashion. It
perturbs the runtime status inside the JVM, and enables
developers to detect internal weaknesses at the code level
(not the service interaction level).

6.2 Exception Analysis
Now we discuss exception analysis. Martins et al. [31]
presented VerifyEx to test Java exceptions by inserting
exceptions at the beginning of try blocks. Their goal is
to improve test coverage and not to assess error-handling
contracts as done in CHAOSMACHINE. Byeong-Mo et al. [9]
gave a comprehensive review on exception analysis. Fu and
Ryder [16] described a static analysis method for excep-
tion chains in Java. Magiel Bruntink et al. [8] proposed a
characterization and evaluation method to discover faults
in idiom-based exception handling. Zhang and Elbaum [44]
presented an approach that amplifies test to validate excep-
tion handling. Cornu et al. [11] proposed a classification of
try-catch blocks at testing time. Here, the problem domain
and implementation techniques are different: those authors
use modified source code and test suites to study resilience.
On the contrary, CHAOSMACHINE operates in production
with Java bytecode, using real production traffic to conduct
the analysis.

Czeck et al. [13] described a methodology for modeling
fault effects on system behavior. They construct a behavior
model based on a small set of workloads and use the
model to infer the fault behavior of other workloads. In
comparison, CHAOSMACHINE is directly applied to the
production system to make and falsify hypotheses about
its resilience. Finally, chaos engineering relates to failure-
oblivious computing [36]: both are engineering techniques

14

for production failures, yet failure-oblivious computing is
not about the active injection of faults in the production
systems.

6.3 Dependability Benchmarking

Dependability benchmarking is another relevant field. This
is a systematical process to characterize system behavior in
the presence of faults [26, p. xiii]. Kanoun et al. [25] pro-
posed a framework called DBench, which defines a series of
benchmarks for off-the-shelf software components. Durães
et al. [15] designed a dependability benchmark for web-
servers. Sangroya and Bouchenak [38] presented a generic
software architecture for dependability and performance
benchmarking of cloud computing services. Sangroya et al.
[39] proposed specifically a benchmark suite for evaluating
the dependability and performance of MapReduce [14] sys-
tems. Herscheid et al. [21] invented Hovac, a configurable
tool for dependability benchmarking of C/C++ applica-
tions.

Both CHAOSMACHINE and the above dependability
benchmarking frameworks use fault injection techniques
to perturb a software system. However, the methodologies
are very different. The main difference is that CHAOSMA-
CHINE takes advantage of production workloads to evaluate
the given application. Moreover, CHAOSMACHINE defines
application-specific hypotheses before experiments, while
benchmarks usually conduct generic measurements based
on implicit oracles (in particular crashes).

7 CONCLUSION

This paper presented CHAOSMACHINE, which analyzes and
falsifies exception-handling hypotheses in Java programs
running in production. We showed, on three large appli-
cations, that CHAOSMACHINE is able to produce actionable
reports for developers to gain more confidence about the
resilience of their system, and to point out critical try-catch
blocks that need more attention. In future work, we will
improve the monitoring sidecar to capture more precisely
the steady state of the system. We will also design more
advanced perturbation models, for example by changing the
timing of methods invocation.

ACKNOWLEDGEMENTS

This work was partially supported by the Wallenberg
AI, Autonomous Systems and Software Program (WASP)
funded by the Knut and Alice Wallenberg Foundation.

REFERENCES

[1] Principles of chaos engineering. http://principlesofchaos.org/,
April 2018.

[2] John Allspaw. Fault injection in production. Queue, 10(8):30:30–
30:35, August 2012.

[3] Peter Alvaro, Kolton Andrus, Chris Sanden, Casey Rosenthal, Ali
Basiri, and Lorin Hochstein. Automating failure testing research
at Internet scale. In Proceedings of the Seventh ACM Symposium
on Cloud Computing, SoCC ’16, pages 17–28, New York, NY, USA,
2016. ACM.

[4] Peter Alvaro and Severine Tymon. Abstracting the geniuses away
from failure testing. Queue, 15(5):10:29–10:53, October 2017.

[5] Jean Arlat, Martine Aguera, Louis Amat, Yves Crouzet, Jean-
Charles Fabre, Jean-Claude Laprie, Eliane Martins, and David
Powell. Fault injection for dependability validation: A method-
ology and some applications. IEEE Trans. Software Eng., 16(2):166–
182, 1990.

[6] J. H. Barton, E. W. Czeck, Z. Z. Segall, and D. P. Siewiorek. Fault
injection experiments using fiat. IEEE Transactions on Computers,
39(4):575–582, Apr 1990.

[7] A. Basiri, N. Behnam, R. de Rooij, L. Hochstein, L. Kosewski,
J. Reynolds, and C. Rosenthal. Chaos engineering. IEEE Software,
33(3):35–41, May 2016.

[8] Magiel Bruntink, Arie van Deursen, and Tom Tourwé. Discovering
faults in idiom-based exception handling. In ICSE, pages 242–251.
ACM, 2006.

[9] Byeong-Mo Chang and Kwanghoon Choi. A review on exception
analysis. Information & Software Technology, 77:1–16, 2016.

[10] Michael Alan Chang, Bredan Tschaen, Theophilus Benson, and
Laurent Vanbever. Chaos Monkey: Increasing SDN reliability
through systematic network destruction. SIGCOMM Comput.
Commun. Rev., 45(4):371–372, August 2015.

[11] Benoit Cornu, Lionel Seinturier, and Martin Monperrus. Excep-
tion Handling Analysis and Transformation Using Fault Injection:
Study of Resilience Against Unanticipated Exceptions. Information
and Software Technology, 57:66–76, January 2015.

[12] Domenico Cotroneo, Luigi De Simone, Pietro Liguori, Roberto
Natella, and Nematollah Bidokhti. How bad can a bug get? an
empirical analysis of software failures in the openstack cloud
computing platform. In Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/FSE 2019, pages
200–211, New York, NY, USA, 2019. ACM.

[13] E. W. Czeck and D. P. Siewiorek. Observations on the effects of
fault manifestation as a function of workload. IEEE Transactions on
Computers, 41(5):559–566, May 1992.

[14] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data
processing on large clusters. Commun. ACM, 51(1):107–113, 2008.

[15] João Durães, Marco Vieira, and Henrique Madeira. Dependability
benchmarking of web-servers. In Computer Safety, Reliability, and
Security, 23rd International Conference, SAFECOMP 2004, Potsdam,
Germany, September 21-24, 2004, Proceedings, pages 297–310, 2004.

[16] Chen Fu and Barbara G. Ryder. Exception-chain analysis: Reveal-
ing exception handling architecture in Java server applications. In
Proceedings of the 29th International Conference on Software Engineer-
ing, ICSE ’07, pages 230–239, Washington, DC, USA, 2007. IEEE
Computer Society.

[17] Yonas Ghidei. Lineage-driven fault injection for actor-based pro-
grams. Master’s thesis, KTH, School of Electrical Engineering and
Computer Science (EECS), 2019.

[18] Sudipto Ghosh and John L. Kelly. Bytecode fault injection for Java
software. J. Syst. Softw., 81(11):2034–2043, November 2008.

[19] Haryadi S. Gunawi, Thanh Do, Joseph M. Hellerstein, Ion Stoica,
Dhruba Borthakur, and Jesse Robbins. Failure as a service (FaaS):
A cloud service for large-scale, online failure drills. Technical
Report UCB/EECS-2011-87, EECS Department, University of Cal-
ifornia, Berkeley, Jul 2011.

[20] Seungjae Han, K. G. Shin, and H. A. Rosenberg. Doctor: an in-
tegrated software fault injection environment for distributed real-
time systems. In Proceedings of 1995 IEEE International Computer
Performance and Dependability Symposium, pages 204–213, April
1995.

[21] Lena Herscheid, Daniel Richter, and Andreas Polze. Hovac:
A configurable fault injection framework for benchmarking the
dependability of C/C++ applications. In 2015 IEEE International
Conference on Software Quality, Reliability and Security, QRS 2015,
Vancouver, BC, Canada, August 3-5, 2015, pages 1–10, 2015.

[22] Yury Izrailevsky and Ariel Tseitlin. The Netflix Simian
Army. http://techblog.netflix.com/2011/07/netflix-simian-army.
html, July 2011.

[23] Rod Johnson, Juergen Hoeller, Alef Arendsen, Thomas Risberg,
and Dmitriy Kopylenko. Professional Java Development with the
Spring Framework. Wrox Press Ltd., Birmingham, UK, UK, 2005.

[24] Ghani A. Kanawati, Nasser A. Kanawati, and Jacob A. Abraham.
FERRARI: A tool for the validation of system dependability prop-
erties. In FTCS, pages 336–344. IEEE Computer Society, 1992.

[25] Karama Kanoun, Henrique Madeira, Mario Dalcin, Francisco Mor-
eira, and Juan Carlos Ruiz Garcia. DBench * (Dependability
Benchmarking). In 5th European Dependable Computing Conference,

http://principlesofchaos.org/
http://techblog.netflix.com/2011/07/netflix-simian-army.html
http://techblog.netflix.com/2011/07/netflix-simian-army.html

15

Dependable Computing - EDCC 2005 5th European Dependable
Computing Conference, Budapest, Hungary, April 20-22, 2005,
Proceedings, Budapest, Hungary, April 2005.

[26] Karama Kanoun and Lisa Spainhower. Dependability Benchmarking
for Computer Systems. Wiley-IEEE Computer Society Pr, 2008.

[27] W. I. Kao, R. K. Iyer, and D. Tang. Fine: A fault injection and mon-
itoring environment for tracing the Unix system behavior under
faults. IEEE Transactions on Software Engineering, 19(11):1105–1118,
Nov 1993.

[28] Hyosoon Lee, Youngshik Song, and Heonshik Shin. SFIDA: a
software implemented fault injection tool for distributed depend-
able applications. In Proceedings Fourth International Conference/Ex-
hibition on High Performance Computing in the Asia-Pacific Region,
volume 1, pages 410–415 vol.1, May 2000.

[29] Tanakorn Leesatapornwongsa and Haryadi S. Gunawi. The case
for drill-ready cloud computing. In Proceedings of the ACM Sym-
posium on Cloud Computing, SOCC ’14, pages 13:1–13:8, New York,
NY, USA, 2014. ACM.

[30] Paul D. Marinescu and George Candea. Efficient testing of
recovery code using fault injection. ACM Trans. Comput. Syst.,
29(4):11:1–11:38, December 2011.

[31] Alexandre Locci Martins, Simone Hanazumi, and Ana
Cristina Vieira de Melo. Testing Java exceptions: An
instrumentation technique. In COMPSAC Workshops, pages
626–631. IEEE Computer Society, 2014.

[32] B. Montrucchio, M. Rebaudengo, and A. Velasco. Fault injection in
the process descriptor of a Unix-based operating system. In 2014
IEEE International Symposium on Defect and Fault Tolerance in VLSI
and Nanotechnology Systems (DFT), pages 281–286, Oct 2014.

[33] Heather Nakama. Inside Azure search: Chaos en-
gineering. https://azure.microsoft.com/en-us/blog/
inside-azure-search-chaos-engineering/, July 2015.

[34] Roberto Natella, Domenico Cotroneo, and Henrique S Madeira.
Assessing dependability with software fault injection: A survey.
ACM Computing Surveys (CSUR), 48(3):44, 2016.

[35] Kyle Parrish and David Halsey. Too big to test: Breaking
a production brokerage platform without causing financial
devastation. https://conferences.oreilly.com/velocity/
devops-web-performance-ny-2015/public/schedule/detail/
45012, October 2015.

[36] M. Rinard, C. Cadar, D. Dumitran, D.M. Roy, T. Leu, and W.S.
Beebee Jr. Enhancing server availability and security through
failure-oblivious computing. In Proceedings of the 6th conference
on Symposium on Operating Systems Design & Implementation, pages
21–21. USENIX Association, 2004.

[37] Casey Rosenthal, Aaron Blohowiak Lorin Hochstein, Nora Jones,
and Ali Basiri. Chaos engineering - Building confidence in system
behavior through experiments. O’Reilly, 2017.

[38] Amit Sangroya and Sara Bouchenak. A reusable architecture
for dependability and performance benchmarking of cloud ser-
vices. In Service-Oriented Computing - ICSOC 2015 Workshops -
WESOA, RMSOC, ISC, DISCO, WESE, BSCI, FOR-MOVES, Goa,
India, November 16-19, 2015, Revised Selected Papers, pages 207–218,
2015.

[39] Amit Sangroya, Sara Bouchenak, and Damián Serrano. Experience
with benchmarking dependability and performance of mapreduce
systems. Perform. Eval., 101:1–19, 2016.

[40] Gerald Schermann, Jürgen Cito, Philipp Leitner, Uwe Zdun, and
Harald C. Gall. We’re doing it live: A multi-method empirical
study on continuous experimentation. Information and Software
Technology, 99:41 – 57, 2018.

[41] Z. Segall, D. Vrsalovic, D. Siewiorek, D. Yaskin, J. Kownacki,
J. Barton, R. Dancey, A. Robinson, and T. Lin. Fiat-fault injection
based automated testing environment. In [1988] The Eighteenth In-
ternational Symposium on Fault-Tolerant Computing. Digest of Papers,
pages 102–107, June 1988.

[42] Craig Sheridan, Darren Whigham, and Matej Artac. DICE fault
injection tool. CoRR, abs/1707.06420, 2017.

[43] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues,
Xu Zhao, Yongle Zhang, Pranay Jain, and Michael Stumm. Simple
testing can prevent most critical failures: An analysis of produc-
tion failures in distributed data-intensive systems. In 11th USENIX
Symposium on Operating Systems Design and Implementation, pages
249–265, 2014.

[44] Pingyu Zhang and Sebastian Elbaum. Amplifying tests to validate
exception handling code: An extended study in the mobile appli-

cation domain. ACM Trans. Softw. Eng. Methodol., 23(4):32:1–32:28,
September 2014.

Long Zhang is now a Ph.D. student in com-
puter science at KTH Royal Institute of Tech-
nology, Sweden. His research work focuses on
self-healing software, chaos engineering and an-
tifragile systems. Long received his BE degree
and ME degree in software engineering from
Harbin Institute of Technology, China. Before his
Ph.D. study, Long was hired by Tencent as a soft-
ware developer and project manager, who was
responsible for university-enterprise cooperation
projects design and development.

Brice Morin is a Senior Research Scientist at
SINTEF Digital, Oslo, Norway. His research fo-
cuses on Model-Driven Software Engineering
for complex, heterogeneous and distributed sys-
tems. He is a core contributor to ThingML, an
open-source high-level programming language
targeting this kind of systems. He received a
Ph.D. from the University of Rennes (France) in
2010.

Philipp Haller is an Associate Professor of
Computer Science at KTH Royal Institute of
Technology (Sweden). He was part of the team
that received the 2019 ACM SIGPLAN Program-
ming Languages Software Award for the devel-
opment of the Scala programming language. He
received a Ph.D. from EPFL (Switzerland) and
a Diplom-Informatiker degree from Karlsruhe In-
stitute of Technology (Germany). His main re-
search interests are in the design and implemen-
tation of programming languages, type systems,

concurrency, and distributed programming.

Benoit Baudry is a WASP Professor at the KTH
Royal Institute of Technology in Stockholm, Swe-
den, and the director of the CASTOR center for
software research at KTH. Until August 2017 he
was a research scientist at INRIA in Rennes,
France, where he led the DiverSE research
group (EPI) from 2013 to 2017. His research
focuses on software diversification and testing
for reliability and moving target defenses. He
performs experimental research with large open
source software systems. Experiments support

sound science and close collaboration with software industry.

Martin Monperrus is Professor of Software
Technology at KTH Royal Institute of Technol-
ogy. He was previously associate professor at
the University of Lille and adjunct researcher
at Inria. He received a Ph.D. from the Univer-
sity of Rennes, and a Master’s degree from
the Compiègne University of Technology. His re-
search lies in the field of software engineering
with a current focus on automatic program repair,
program hardening and chaos engineering.

https://azure.microsoft.com/en-us/blog/inside-azure-search-chaos-engineering/
https://azure.microsoft.com/en-us/blog/inside-azure-search-chaos-engineering/
https://conferences.oreilly.com/velocity/devops-web-performance-ny-2015/public/schedule/detail/45012
https://conferences.oreilly.com/velocity/devops-web-performance-ny-2015/public/schedule/detail/45012
https://conferences.oreilly.com/velocity/devops-web-performance-ny-2015/public/schedule/detail/45012

	1 Introduction
	2 Background on Chaos Engineering
	2.1 Brief Overview
	2.2 Core Concepts
	2.3 Basic Chaos Methodology
	2.4 Differences Between Traditional Fault Injection and Chaos Engineering

	3 Design of Chaos System for Exception-Handling
	3.1 Overview
	3.2 Input to ChaosMachine
	3.3 Architecture of ChaosMachine
	3.3.1 Monitoring Sidecars
	3.3.2 Perturbation Injectors
	3.3.3 Chaos Controller

	3.4 Output for Developers
	3.5 Implementation

	4 Evaluation
	4.1 Evaluation on TTorrent
	4.1.1 Overview of the BitTorrent protocol
	4.1.2 Experiment protocol
	4.1.3 Experimental results
	4.1.4 Case studies
	4.1.5 Falsification on next version

	4.2 Evaluation on XWiki
	4.2.1 Introduction of XWiki
	4.2.2 Experiment protocol
	4.2.3 Experimental results
	4.2.4 Case studies

	4.3 Evaluation on Broadleaf
	4.3.1 Introduction of Broadleaf
	4.3.2 Experiment protocol
	4.3.3 Experimental results
	4.3.4 Case studies
	4.3.5 Discussion of Broadleaf experiment

	4.4 Overhead of the ChaosMachine

	5 Discussion
	5.1 Threats to Validity
	5.1.1 Internal Validity
	5.1.2 External Validity
	5.1.3 Construct Validity

	5.2 Extensibility of ChaosMachine

	6 Related work
	6.1 Software Fault Injection
	6.2 Exception Analysis
	6.3 Dependability Benchmarking

	7 Conclusion
	References
	Biographies
	Long Zhang
	Brice Morin
	Philipp Haller
	Benoit Baudry
	Martin Monperrus

